
www.manaraa.com

Softw Syst Model (2017) 16:949–977
DOI 10.1007/s10270-015-0498-5

REGULAR PAPER

An approach based on the domain perspective to develop WSAN
applications

Taniro Rodrigues1 · Flávia C. Delicato2 · Thais Batista1 · Paulo F. Pires2 ·
Luci Pirmez2

Received: 3 November 2014 / Revised: 30 July 2015 / Accepted: 26 August 2015 / Published online: 25 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract As wireless sensor and actuator networks
(WSANs) can be used in many different domains, WSAN
applications have to be built from two viewpoints: domain
andnetwork. These different viewpoints create a gapbetween
the abstractions handled by the application developers,
namely the domain and network experts. Furthermore, there
is a coupling between the application logic and the under-
lying sensor platform, which results in platform-dependent
projects and source codes difficult to maintain, modify, and
reuse.Consequently, the process of developing an application
becomes cumbersome. In this paper, we propose a model-
driven architecture (MDA) approach for WSAN application
development. Our approach aims to facilitate the task of the
developers by: (1) enabling application design through high
abstraction level models; (2) providing a specific method-
ology for developing WSAN applications; and (3) offering
an MDA infrastructure composed of PIM, PSM, and trans-
formation programs to support this process. Our approach

Communicated by Prof. Franck Barbier.

B Taniro Rodrigues
tanirocr@gmail.com

Flávia C. Delicato
fdelicato@gmail.com

Thais Batista
thaisbatista@gmail.com

Paulo F. Pires
paulo.f.pires@gmail.com

Luci Pirmez
luci.pirmez@gmail.com

1 Universidade Federal do Rio Grande do Norte, Campus
Universitário, Natal, RN 59078-970, Brazil

2 Universidade Federal do Rio de Janeiro, Cidade Universitária,
Rio de Janeiro, RJ 21941-901, Brazil

allows the direct contribution of domain experts in the devel-
opment of WSAN applications, without requiring specific
knowledge of programming WSAN platforms. In addition,
it allows network experts to focus on the specific character-
istics of their area of expertise without the need of knowing
each specific application domain.

Keywords WSAN applications · Model-driven archi-
tecture · Domain-specific language · UML profile ·
Architecture · Code generation · Abstraction

1 Introduction

Wireless sensor and actuator network (WSAN) is a promising
research field with potential application in different domains,
such as military, environmental, industrial, security, and
health [43]. A WSAN consists of small, wireless, spatially
distributed, and often battery-powered devices equippedwith
a radio transceiver, sensors, actuators, and amicro-controller.
The WSAN systems are capable of observing the physical
world to obtain useful information from it. Moreover, these
systems can process the obtained data, make decisions, and
perform specific operations in the monitored environment,
such as turn on devices (as lamps or fans), through actuators
installed on the nodes. WSAN systems can be considered
as a specialization of distributed, real-time, and embedded
(DRE) systems. As such, WSANs are characterized by a
high heterogeneity regarding application requirements, radio
technology, node capabilities, and network protocols.

There are twomain sources of complexity ofWSANappli-
cation: (1) a lack of adequate abstractions in application
development and (2) a lack of tool chains for application
development [42]. Programming for this type of network is
very hard because it requires developers to know the available

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0498-5&domain=pdf

www.manaraa.com

950 T. Rodrigues et al.

sensor platforms specificities, increasing the application’s
development learning curve. Moreover, the WSAN domain
has no optimal or recommended development methodol-
ogy, thus leading developers to use an extreme programming
(code-and-fix) approach where, sometimes, the written code
has the domain knowledge tied with the platform imple-
mentation. Nowadays, there are several different platforms
that support the WSAN application development and execu-
tion, each one having its own requirements, execution and
programming environments, and software tools. Currently,
application developers need to know several WSAN-specific
characteristics to build applications through the use of low-
level abstractions provided by the sensor node’s operating
system (OS). Thus, WSAN applications are generally devel-
oped from two viewpoints: The first is the domain expert’s
(biologists, engineers, geologists, among others) viewpoint
and the second is the network expert’s viewpoint. These
different viewpoints create a gap between the abstractions
handled by such types of developers. Thus, the process
of developing a WSAN application becomes harder than
it should be. Furthermore, the high coupling between the
domain rules and the underlying sensor platform, combined
with the lack of a development methodology to support the
application lifecycle, result in platform-dependent projects
and source code difficult to maintain, modify, and reuse.

We argue that a solution to increase the abstraction level
when developing WSAN applications is by adopting an
approach that facilitates the communication among devel-
opers, while promoting a clear and synergetic separation
between the specification of requirements at the domain level
and the specification of such requirements in a given wireless
sensor platform. In our solution, we propose adopting a soft-
ware development process based on the creation of unified
modeling language (UML) [31] models through a model-
driven architecture (MDA) [27] approach. The UML is
OMG’s (Object Management Group) specification to model
an application’s structure, behavior, and architecture.

Thedevelopment of systemsusing theMDA[30] approach
allows specifying systems at a high abstraction level and sub-
sequently applying automatic transformations (also called
mappings) from this specification to generate code for a spe-
cific computational platform. In MDA, models are divided
into three views [26]: (1) CIM (computation-independent
model) is a view of a system from the computation-
independent viewpoint that is responsible for providing
system requirementswithout defining computational aspects,
(2) PIM (platform-independent model) is a view of a sys-
tem from the platform-independent viewpoint responsible
for describing the application behavior without considering
details of a specific platform, and (3) PSM (platform-specific
model) is a view of a system from the platform-specific view-
point that is responsible for describing the application/system
using concepts and features of a specific target platform. A

transformation consists of a script written in a transforma-
tion language that has as input an instance of a model (and
its associated meta-model) and as output a newmodel. MDA
defines two types of transformations:M2M (model to model)
andM2T (model to text). Thefirst one is responsible for trans-
formations between models, for example, a transformation
from a PIM to a PSM. The second one is responsible for
transformations between model and text, for example, from
PSM to source code.

The MDA approach offers different options for the def-
inition of the PIM and PSM meta-models, such as DSLs
and UML profiles. The choice of UML as a meta-language
for specifying our meta-models leverages the use of mod-
els already existing in the UML definition as a basis for the
application’s model specification, thus decreasing the learn-
ing curve of developers to model applications. Features that
are not natively supported by UML have to be included in
the meta-models through a set of stereotypes present in a
UML profile. A UML profile is an extension mechanism that
provides a way to customize models for a specific domain.
A profile is composed of classes, stereotypes, data types,
primitive types, and/or enumerations that modify the UML’s
meta-classes (for example, Class, Component, and more) so
as to add properties that are needed to specify a target domain.
The goal of using UML profiles is to allow application devel-
opers to include in the models information about the domain
knowledge through the properties present in the stereotypes.
Thus, a UML profile can be reused numerous times to model
applications of a target domain. The use ofUMLprofile as the
extension mechanism has two major advantages: (1) Prop-
erties specified in the profiles do not affect the properties
of standard UML models and (2) decrease the development
effort of the MDA approach, as it is possible to inherit the
basic modeling components from the UML specification.

In order to fully achieve the benefits of theMDAapproach,
it is imperative to tailor the different software artifacts
involved in such approach to a target domain. Moreover,
as the MDA specification [26] does not encompass a soft-
ware development process, the development team is in charge
of defining a customized process to organize the activi-
ties needed to correctly handle the MDA software artifacts
used to build the applications. In this context, our goal
is to provide such a customization of the MDA approach
for the WSAN domain. The proposed MDA infrastructure,
named ArchWiSeN (Architecture for Wireless Sensor and
Actuator Networks), encompasses PIM, PSM and trans-
formations, and an associated process to deal with the
aforementioned issues to develop WSAN applications. The
application domain knowledge is represented at the PIM level
usingUML’s class and activity diagrams enhanced by aUML
profile. Such WSAN profile was designed to add specific
properties from theWSANdomain. As the PIMdescribes the
semantics of the elements necessary to buildWSAN applica-

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 951

tions regardless the implementation platform, the knowledge
representing different sensor and actuator platforms is spec-
ified at the PSM level. Consequently, the proposed MDA
infrastructure is able to encompass different PSM meta-
models for the existing WSAN platforms. As every WSAN
platform has its own features, their meta-models have to
be represented differently. For example, our PSM for the
TinyOS [18] platform is composed of UML’s component and
state machine diagrams enhanced with a UML profile, while
our PSM for the Sun SPOT [32] platform is composed of
UML’s component and class diagrams enhancedwith another
UML profile.

In this work, we claim that the adoption of the high-level
abstract models provided by anMDAapproach applied to the
WSAN domain, along with the use of the proposed applica-
tion development process, offers an enhanced development
environment where (1) each developer executes only his/her
independent task related to his/her own expertise field; (2)
the communication between developers is facilitated, thus
improving their productivity; (3) the developers can inter-
act using high-level models that are easier to understand
than platform-specific code; and (4) all previously modeled
information can be easily reused for modifying an existing
application or creating a brand new application.

The use of an MDA approach, in general, brings classi-
cal benefits regarding reuse and maintainability of software,
but it is necessary to verify that such benefits are kept in
the context of WSAN applications and if so, what are the
benefits in terms of development effort. To perform such
validation, we evaluated our approach with (1) a proof-of-
concept using a number of different scenarios in order to
demonstrate the functionality and use ofArchWiSeN in prac-
tice, and (2) the execution of a controlled experiment with
real users to develop WSAN applications with and without
the use of ArchWiSeN in order to test the approach in terms
of productivity, understandability, and reuse.

The main goals of this work are: (1) to define a process
to create all MDA artifacts encompassed in the Arch-
WiSeN infrastructure; (2) to develop theMDAartifacts (PIM,
PSM, and transformations) that compose ArchWiSeN; (3) to
define a process to build WSAN applications with the pre-
sented approach using the developed MDA artifacts, where
developers benefit from better productivity, comprehension,
separation of concerns, and reuse.

The remainder of this paper is organized as follows.
Section 2 presents an approach overview, including the devel-
opment process and all necessary MDA artifacts and the
process to define a WSAN application using this approach.
Section 3 presents the evaluation performedwith a controlled
experiment and a proof-of-concept. Finally, Sect. 4 presents
the related work and Sect. 5 concludes the paper.

2 Approach overview

This section presents the processes of building and using
ArchWiSeN from the domain engineering (ArchWiSeN
development) to the application engineering (WSAN appli-
cation development). Considering the context of building an
MDA infrastructure, the domain engineering process con-
cerns the creation of ArchWiSeN’s MDA artifacts such as
UML profiles and transformations. The application engi-
neering process concerns the definition of a process to guide
WSANapplication developers (domain and network experts)
through the process of creating a concrete application using
ArchWiSeN’s provided artifacts.

The domain engineering process [8], composed of the
design and implementation phases, is responsible for the
development of reusable artifacts such as components, trans-
formations, DSLs (domain-specific languages), and user
documentation needed to build an application. In such
process,we emphasize the design and implementation phases
focused on building a reusable software infrastructure,
instead of developing a single application, as in traditional
application development. The domain design phase includes
developing a base infrastructure on which WSAN appli-
cations can be properly specified. It also allows planning
how individual systems can be created from reusable soft-
ware artifacts. The domain implementation phase involves
the development of reusable artifacts, as UML profiles and
transformations.

The application engineering is the process responsible
for the development of concrete applications from reusable
software artifacts created through the domain engineering.
The application engineering process begins with require-
ments elicitation, goes through the analysis and specification
phases, and ends with the creation of the source code.

The domain and application engineering processes pro-
mote two different levels of reuse. The first level concerns
the MDA infrastructure by itself. ArchWiSeN encompasses
meta-models and transformations that can be used multiple
times during the application engineering processes. Addi-
tionally, and regardless the application domain, all the MDA
artifacts are able to be extended since they use standardized
modeling language (UML) and transformation languages
(for both M2M and M2T). The second level of reuse regards
the models specified when an application is developed using
ArchWiSeN through the application engineering process. All
models can be reused to extend an application or to create a
new one using the previous models as starting points. Such
reuse potentially speeds up the application development in
comparisonwith the building of a brand newapplication from
scratch.

123

www.manaraa.com

952 T. Rodrigues et al.

2.1 Domain engineering

This section describes the software artifacts built to support
the application engineering process for the development of
WSAN applications using ArchWiSeN (Sect. 2.2). Besides
supporting the development process of WSAN applications,
the presented software artifacts are extensible to accom-
modate the inclusion of new UML profiles and/or model
transformations whenever required, for instance, when a new
sensor platform arises.

Figure 1 presents the domain engineering implementa-
tion phase. By using this process, developers (for sake of
clarity, the developers mentioned in this subsection are the
ArchWiSeN’s developers) are able to add or to modify any
required feature from the available software artifacts. The
first activity, “Create Platform Independent UML profile,”
aims at specifying a UML profile that extends all UML
elements needed to describe a WSAN application, at a
platform-independent level (PIM). Next, the “Create Plat-
form Specific UML Profile” activity aims at extending UML
elements to define specific information for an existing sen-
sor platform (PSM). Each PSM describes the characteristics
needed to develop any application in a specific sensor plat-
form. Such PSMs should be designed in a way they cover
the majority of details needed to represent any application
in the target platform. We have currently built PSM for the
TinyOS platform. All UML profiles and models were devel-
oped using the Eclipse’s Papyrus [14] plug-in (both PIM and
PSM).

The “CreateM2MTransformation Program” activity aims
at transforming, throughMDAmodel tomodel (M2M) trans-
formations, an applicationmodel, developed at the PIM level,
into a platform-specific application (PSM) model, having as
base a target PSM meta-model. In this work, we built the
transformation programs by using the Atlas Transformation
Language (ATL) [29].

Finally, to enable the source code generation is necessary
to perform the “CreateM2T Transformation Program” activ-
ity. In this activity, templates (source code skeletons to each
target platform) are developed. TheM2T transformation pro-
gram is able to generate a source code based on the developed
templates from a platform-specific model. In our work, these
templates were developed using the Eclipse Acceleo plugin

[12]. Acceleo is a MOF model to text (M2T) transformation
language (MOFM2T) implementation.

The described activities produce the ArchWiSeN’s soft-
ware artifacts. With these artifacts (PIM UML profile, PSMs
UML profiles, M2M, and code templates for WSAN plat-
forms), it is possible to apply the proposed MDA approach
to build a WSAN application. The following subsections
describe each software artifact developed through the domain
engineering process.

The remainder of this Section is organized as follows:
Sect. 2.1.1 presents the platform-independent meta-model
defined for ArchWiSeN, Sect. 2.1.2 presents the platform-
specific meta-models for two currently supported sensor
network platforms, and Sect. 2.1.3 presents the transforma-
tions that allow the automatic generation of source code.

2.1.1 Platform-independent meta-model

We conducted a literature review on domain-specific lan-
guages (DSLs) andmeta-models of differentWSANdomains
in order to understand how a PIM could be used to ful-
fill functional and non-functional requirements of a wide
range ofWSANapplications,while having a suitable abstrac-
tion level without including platform-level decisions. Our
goal was to elucidate the properties needed to a meta-model
where domain experts could describe their systems using
only abstract concepts from the WSAN field. As outcome of
such literature review, we highlight the works described in
[5,10,17,24,39].

In [5], the authors use a UML profile for the specification
of WSAN applications for TinyOS platform. The applica-
tions are organized in a structural view and a behavioral
view through UML’s component and sequence diagrams,
respectively. Unfortunately, the numerous TinyOS platform
properties present in [5] did no help to construct our domain
model, but we found the presented division between the spec-
ification of structure and behavior valid for the definition of
WSAN applications independently on the target platform.
Such a division is important because it separates the phys-
ical organization of the network from the node’s behavior,
two viewpoints that are fundamental for the WSAN devel-
opment process. Besides enabling the separation of concerns
between infrastructure and behavior, separating such view-

Fig. 1 Domain engineering process

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 953

points presents advantages as the possibility to reuse the
infrastructure models to define new application for the same
infrastructure as well as the reuse of behavior models for
implementing new requirements or new applications.

The works presented in [10] and [17] describe a soft-
ware product line for the WSAN context able to represent
important features of this domain, such as functional andnon-
functional requirements, for example, network protocols,
network organization (flat, hierarchical), sensor capabilities,
and more. Such characteristics are important to define the
WSANdomain in a platform-independentway, and their con-
cepts were used during the development of our PIM. From
the DSL presented in [24], we were inspired to divide the
WSAN organization in regions and node groups. Moreover,
from the different views presented in [39] we adopted the
division of the PIM model in a configuration view, allowing
the definition of non-functional requirements.

The current platform-independent meta-model uses UML
class and activity diagrams as a base to describe all the infor-
mation needed to define an application. Our PIM uses UML
profiles to fill all model elements with WSAN-specific prop-
erties. The goal was, through the designed profiles, allowing
developers to include WSAN structural and behavioral char-
acteristics in the models.

The platform-independent meta-model was developed
considering (1) the different developers’ viewpoints (domain
and network); (2) the different abstraction levels (platform-
independent or platform-dependent); and (3) the need of
taking into account functional and non-functional proper-
ties during the application engineering process. Given the
aforementioned PIM characteristics, and using the UML’s
ability to provide different views through its diagrams, it
becomes possible to separate the modeling application into
three different views: (1) structural, (2) behavioral, and (3)
configuration. This strategy promotes separation of concerns
and reuse of software artifacts.

We will use a scenario to detail each artifact present in
MDA infrastructure. This scenario considers the develop-
ment of a simple Smart Home application with the goal of
automatic controlling the illumination and the temperature
in a house. The application considers the creation of two
smart environments inside a house, namely a lounge and a
bedroom. Both environments are endowed with automatic
light and temperature control. The environment control is
done through actuators connected to the air conditioner and
lamps. The application will turn the lights on when someone
is detected inside a room while the temperature must be kept
at 20 ◦C at all times.

As mentioned before, a UML class diagram is used to
model the structural view of WSAN applications. To design
such model, the developer must create a new class diagram
and apply the WSAN profile (Fig. 4a for further details).
Then, the developer should set the main package with the

stereotype «system». The next step is to create sub-packages
that represent «regions» and a stereotype that character-
izes the nodes by physical proximity. Inside each region,
it is necessary to create UML classes that represent «node-
groups», containing all the nodes in charge of performing
a same task. The «nodegroup» stereotype stores informa-
tion about the number of nodes that will perform a task and
the hardware used by the entire group. A nodegroup has a
definition property where the «nodedefinition» is specified.
A «nodedefinition» incorporates information that specifies
the infrastructure as the sensors, target operational system,
actuators, and battery. There are «wirelesslinks» connect-
ing «nodegroups» that represent the wireless communication
between two «nodegroups» and the direction of that com-
munication. Each one of the existing «nodegroups» has a
behavior that is modeled through the behavioral view.

Figure 2 shows the structural view of our scenario appli-
cation. In such a diagram, it is possible to see the existence of
two regions, each one containing one «nodegroup» and one
«nodedefinition». The «nodegroup» of the «region» Server-
Room is named Room and has a «nodedefinition» named
MyNodes. In MyNodes, it is possible to see the devices that
are connected to the nodes, two sensors: temperature and
light. Finally, in the «region» SinkRoom the Control «node-
group» uses a «nodeDefinition» named SinkNode.

For the behavioral view, developers use a UML activity
diagram also enhanced by the WSAN profile (Fig. 4b for
further details). Figure 3 shows the behavioral view model.
In this Figure, it is possible to notice the presence of two
swimlanes: Room and Control. The first swimlane models
the behavior of the «nodegroup» Room (specified in Fig. 2),
while the second swimlanemodels the behavior of the «node-
group» Control (also specified in Fig. 2). The behavior of the
«nodegroup»Room is quite simple. The nodes have to initial-
ize its radios («radio»), start a 20 s timer («timer»), perform
10 readings of the temperature sensor («readSensor»), select
only the higher value («aggregation»), and send («send»)
such a value through the radio. Finally, the behavior of the
«nodegroup» Control is to initialize the radio («radio») and
wait to receive messages («receive»).

The configuration view allows including, in both the
UML’s class and activity diagrams, specific characteristics
such as routing protocol and network topology that directly
affect non-functional requirements. It is important to notice
that the properties present in the configuration view are
related either to the application or to the network domain.
Thus, such properties are not platform specific. Although
such non-functional requirements can represent network
features, they are not entangled with a specific platform,
preserving the PIM properties. For example, the «system»
stereotype from the class diagram can configure WSAN
properties as routing protocol and topology, and the «radio»
stereotype from the activity diagram can configure the radio

123

www.manaraa.com

954 T. Rodrigues et al.

Fig. 2 Structural model of a simple application

Fig. 3 Behavior model of a simple WSN application

duty cycle; such a configuration is independent on the spe-
cific platform the application will run at.

The non-functional requirements currently supported in
ArchWiSeN’s implementation are network lifetime, data
accuracy and asynchronous communication. The design
decisions related to the choice of these non-functional
requirements are strictly related to their importance in the
WSAN domain. We surely did not add all the non-functional
requirements that are relevant for all WSAN application, nor
the missing non-functional requirements are less important,
our goal was to consider some non-functional requirements
that have an impact during early stages of the application
design phase. For example, the network lifetime property is
a non-functional requirement that is critical in the WSAN

domain, since if the nodes have their battery depleted before
the required period of collection, the acquired data can be
considered irrelevant to the application. Therefore, in one
of our previous works we managed to add to ArchWiSeN
a “Network Energy Consumption Analyzer” [35] that esti-
mates the usage of power of a node and provides such
information to the developers where they can compare the
obtained information with the application requirements in
early stages of development. Data accuracy is a property
that corresponds to the precision of the reported phenom-
ena and is very important in domains where data precision
is a required quality of service attribute [3]. The precision
of the data obtained through a sensor can be determined
by the sensor chip inherent characteristics, and thus, it is

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 955

Fig. 4 All stereotypes available in the WSAN profile. a Structural view stereotypes, b behavioral view stereotypes

a non-functional requirement that limits the number of tar-
get hardware and is defined at the structural view. Finally,
as the communication is critical for the WSAN domain, it
is important to properly design the application according to
the chosen communication policy. WSAN applications can
implement different data delivery models based on the trig-
ger of events or in a predefined frequency of data collection.
Event-based applications are often implemented with asyn-
chronous communications, and the decoupling in both space
and time provided by such communication paradigm is well
suited for WSANs in general.

Figure 4 represents all the available stereotypes from
the WSAN profile for the current implementation of Arch-
WiSeN. The arrows in Fig. 4 represent extensions according
to the UML specification [41]. Figure 4a presents the stereo-
types responsible for enhancing the UML class diagram used
in the structural view. Figure 4b presents the stereotypes

responsible for enhancing the UML activity diagram used
in the behavioral view. The stereotypes of the configuration
view are represented in both parts of Fig. 4.

2.1.2 Platform-specific meta-model

Aplatform-specificmodel (PSM)must be able to describe an
application implemented in a specific target platform.APSM
includes all the information required by the chosen platform
to perform its tasks when executing the application. In this
work, we focus only in the TinyOS platform to be used at the
PSM level, but it is important to emphasize that out approach
is open to the different platforms existing forWSAN. In fact,
our previous works [35,36] have already assessed the use
of the proposed MDA approach for different platforms, as
the Sun SPOT, a widely used WSAN platform for academic
experimentation. In [36], we tested the switching between

123

www.manaraa.com

956 T. Rodrigues et al.

WSAN platforms using the same application model and con-
cluded that our approachwas able to generate applications for
both platforms from a single platform-independent model,
thus fully exploiting one of the advantages preconized by
MDA.

TinyOS is an open-source operating system tailored for
wireless sensor networks. The NesC [18] language is an
extension of the C programming language used to implement
TinyOS applications. TinyOS is event-oriented and has a
component-based architecture, which enables the implemen-
tation of applications using preexisting components. TinyOS
libraries provide interfaces and components for common
abstractions and functions such as packet communication,
routing, sensing, actuation, and storage for different types
of sensors. Several sensor hardware platforms, such as Mica
[25] and Telos [40] family, use TinyOS.

TinyOS components are classified as modules or con-
figurations [18]. Modules implement all the functionalities
supported by the application, while configurations describe
howTinyOScomponents are connected (wiredonNesCnota-
tion) to each other. Every component can provide or use an
interface. There are two sources of concurrency in TinyOS:
tasks and events. Tasks are a computation mechanism that
runs to completion and do not preempt each other. Events
mean either a completion of a split-phase operation or an
event from the environment, and they also run to completion,
but may preempt the execution of a task or another event.
Because tasks are executed non-preemptively, TinyOS has
no blocking operations. Thus, all long-latency operations are
split-phase; the operation request and completion are sepa-
rated functions. Commands are typically requests to execute
an operation. If the operation is split-phase, the command
immediately returns and the completionwill be signaledwith
an event. For the aforementioned reason, a module using an
interface must implement its events. The use of an interface
also allows a module to call commands, while a module pro-
viding an interface must implement the commands and its
completion will be signaled with an event.

The semantics of the PSM for TinyOS considers that a
TinyOS application can be represented as a set of states inter-
connected by control flows and triggers that can change the
node’s state. We decided to use such approach because of the
similarity between a state machine and the TinyOS’s pro-
gramming model (and event-driven OS). Moreover, a sensor
behavior is very naturally represented in terms of its different
states and the transitions between them, triggered by internal
and external events in the network. Therefore, a sensing-
based application can be properly represented as a set of
states and actions. In addition, TinyOS is a component-based
OS and the applications are organized as a set of inter-
connected (or wired) components. Therefore, we decided to
adopt a UML’s component diagram to represent the organi-
zation of the components present in a TinyOS application. In

Fig. 5 Platform-specific model of the Smart Home application

our approach, an application model for the TinyOS platform
respects the TinyOS’s architecture and programming model.
In this work, we consider the following possible states for a
WSAN node: (1) turned off, (2) initialized (3), standby, (4)
collecting, and (5) sending. Figure 5 presents an instance of
platform-specific model for the TinyOS platform.

The turned off state means that the device is disconnected
from its power source, either by direct set by the developers
(putting the power switch in the off position) or due to the
total exhaustion of its energy source (i.e., the battery). From
the off state the device can only switch to the initialized state
and no other state may, logically, return to the turned off
state (as we consider that a node cannot be turned off through
TinyOS’s commands). However, in the physical world a node
can change to the turned off state when it has a total discharge
of its power source or by the manual switching of the power
switch to the off position.

The initialized state corresponds to the device state after
the realization of the hardware tests automatically triggered
by the operating system initialization and the tests added
by developers. From the initialized state, the device can
change to any of the other defined states (standby, collect-
ing, sending) via transitions indicated as TinyOS’s events and
triggered by the operating system.The state standby indicates
that the device is initialized and has performed all its tasks
or commands and it is waiting for an event so it can change
the state.

The collecting state indicates the state where the device is
performing data collection using one (or more) of its embed-
ded sensor boards. The device should leave the collecting
state when the operating system triggers the ReadDone event
associatedwith the sensor target collection. From the collect-
ing state, the device may return to the standby state or to the
sending state.

The sending state indicates the state where the device is
transmitting data through its radio unit or a data communi-
cation port (for example, a serial port). The device should
leave the sending state when the operating system triggers
the SendDone event associated with the conclusion of the

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 957

Fig. 6 All stereotypes available in the TinyOS profile

transmission. From the state sending the device may return
to the standby state or to the collecting state.

Finally, as these states are only present in amodel instance
of the PSM(or an applicationmodel), using the native proper-
ties of the UML state-transition diagram, it was necessary to
extend the UML state-transition and component diagrams to
add the properties needed to specify the platform features.
There is a need to create properties to target the follow-
ing platform features: component, module, event, command,
interface, and more. Thus, we added string properties that
modify UML’s transitions and operations to correctly map
from the UML model to the TinyOS platform features.

In this work, we specified a UML profile that extends the
UML state transition and component diagrams. Such UML
profile defines the specific characteristics for all TinyOS ele-
ments (Fig. 6).

The «component» stereotype was created to represent
TinyOS components extending the UML meta-class com-
ponent. The TinyOS’s modules and configurations are rep-
resented by the «module» and «configurations» stereotypes,
which are both generalizations of the «component» stereo-
type. Somepropertieswere added to the «module» stereotype
to implement the application behavior. Some properties were
also added to the «configuration» stereotype to manage the
wirings between components. Furthermore, the UML oper-
ation meta-class was extended to encompass the stereotypes
for «events» and «commands» along with the characteris-
tics they require (as type, arguments, implementation, etc).

At last, the UML transition meta-class was extended to
«TOSComponent», «TOSHelpers» in order to create the rela-
tions between the different UML states and the components
that are implementing the state change.

As mentioned before, the domain engineering process
enables future implementation of newWSAN platforms. For
this purpose, the process shown in Fig. 1 must continue from
the “Create Platform Specific UML profile” activity and fol-
low the “Build M2M transformation program” and “Build
M2T transformation program” activities for the development
of the transformation programs.

2.1.3 Transformations

For each WSAN platform added to the MDA infrastructure,
the model to model (M2M) and the model to text (M2T)
transformations must be defined. The M2M transformations
are designed to map domain knowledge described in a PIM
model into elements of a specific platform model, thus intro-
ducing platform-related characteristics without losing any
domain information.

In our current approach, theM2Mtransformation receives,
as source models, the UML class and activity diagrams
extended by the WSAN profile, and, as result, produces
two target diagrams, which comply to UML state-transition
and component diagrams augmented with the UML profile
of the TinyOS platform (or the TinyOS PSM meta-model).
We defined such transformation using a set of standardized

123

www.manaraa.com

958 T. Rodrigues et al.

queries over the PIM meta-model in order to make parts of
the transformation reusable when implementing the support
for a new WSAN platform into the ArchWiSeN.

The Activity2State algorithm (Fig. 7) presents the trans-
formation from a behavior composed of a sequence of actions
(such as the UML activity diagram used in the PIM of our
approach) into an event-basedmodel (such as theUML state-
transition diagram used in the PSM). Line 1 shows the algo-
rithm name and its output, a UML state-transition diagram
stereotyped with the profile «PSMTinyOS» (PSM!State
Machine : UML «PSMTinyOS»), while line 3 is the entry
model, a UML activity diagram stereotyped with the pro-
file «PIM» forWSAN (PIM!Activity: UML activity diagram
«PIM»).When started, the transformation program performs
a search (line 9) by the UML element called InitialNode in
the entry model (PIM!Activity). If such element is found, the
transformation creates the basic states of the output model
(turned off, initialized, standby, collecting and sending). It
is important to note that the states collecting and sending
will only be added to the outgoing model if at least one ele-
ment «readSensor» or «send», respectively, is located (lines
12 and 15). From this initial configuration, the transforma-
tion program follows conducting an analysis of each of the
UML control flow element (arrows indicating the direction
of activities flow in the UML activity diagram). This analy-
sis is performed as follows. The algorithm looks into the
activity diagram transitions combining the information of
the source element (line 22) and the target (lines 27, 30 and
33) activity to determine which triggers and effects (lines
24 and 25) must be added to a new UML transition element
connecting the corresponding states to the output model (line
56). This process is repeated exhaustively the transformation
considering all possible transitions between the stereotypical
elements in the PIM model.

Figure 8 shows a snippet of the actual ATL transformation
code to generate the platform-specific model for the TinyOS
platform. Line 1 represents the transformation rule name,
while lines from 2 to 10 represent the input UML element
(line 3) that is going to be transformed to an element of
the output meta-model (line 5). This output model also has
inner properties that are going to be filled according to other
transformation rules.

The hardware-specific information is included in differ-
ent properties. For example, the component property present
in the TOS component stereotype relates to the name of
the TinyOS component that implements the target hard-
ware. In the TinyOS platform, hardware devices such as
antenna, LEDSs, and sensors are implemented by the SO
as components. Thus, each different hardware has a different
component implementation, distinguished from each other
only by the component name (i.e., a string). The access
to the component properties is done through standardized
interfaces. Therefore, hardware properties in the PIM are

converted to the name of the correspondent TinyOS compo-
nent that implements such hardware in the TinyOS platform.

It is important to clarify that ArchWiSeN’s PIM meta-
model also allows modeling properties that are not meant to
be targeted as a source of a platformmodel. For example, the
PIM meta-model offers parameters to configure Regions in
terms of the latitude and longitude properties. Such charac-
teristic will be not be considered when creating the platform
model, but they are extremely necessary since they are part of
the application documentation and can be also used for deci-
sionmaking, scheduling algorithms, disseminatingmessages
to the sink, and more.

Following our Smart Home case, the models presented in
Figs. 2 and 3 are automatically transformed into the model
presented in Fig. 5. For example, in Fig. 5 there is a tran-
sition from the booted state to the idle state with and effect
to call the LittleTimer component and configure it to fire
after 20,000ms. When such LittleTimer is fired, the node
will change state from idle to reading. Such modeled behav-
ior was automatically generated by reading the model part
that defines the Room behavior (Fig. 3). When the transfor-
mation program identifies that the PIMmodel has an activity
named LittleTimer with timer stereotype, it will check which
is the next activity (by looking to the UML’s control flow des-
tination) to be performed after such LittleTimer. In this case,
after the timer there is a «readSensor» stereotype. Thus, the
transformation discovers that, when the timer is trigged, the
application has to call the TinyOS’s command to read a sen-
sor, and so on.

The model to text (M2T) transformation takes as input
the UML PSM diagram (UML component and state machine
diagrams augmented with the PSMTinyOS profile) and gen-
erates, as output, NesC [18] source code. Most of the M2T
transformation rules consist of simple mappings that trans-
form each UML PSM elements into their corresponding
NesC code following the BNF rules for the NesC program-
ming language.

Figure 9 shows a snippet of theM2M transformation code.
In line 1 it is possible to notice the creation of the file. In
lines 5–16 this transformation reads the application’s PSM
model to insert into themodule all theused interfaces. Finally,
Fig. 10 presents a snipped of the code automatically gener-
ated after the consecutive execution of theM2Mand theM2T
transformations for our Smart Home case.

To support another WSAN platform into the ArchWiSeN
approach, developers have to perform the domain engineer-
ing process to create the platform-specific models and trans-
formations.Moreover, as the transformations provided in our
approach are defined by using a set of standardized queries
over the PIM meta-model, the effort to add another platform
is concentrated on defining a new PSM, reusing such queries
(and/or creating new queries) to develop the newM2M trans-
formation and developing the M2T transformation.

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 959

Fig. 7 Algorithm for the PIM
to TinyOS transformation

1program Activity2State (PSM!StateMachine : UML «PSMTinyOS»)
2const:
3 PIM!Activity: UML Activity Model «PIM»;
4var:
5 off, booted, idle, reading, sending : UML State «PSM»;
6 flow : UML Control Flow «PIM»;
7 transition : UML Transition «PSM»;
8begin:
9 if PIM!Activity.getInitialNode() == TRUE then
10 PSM!StateMachine.Region.name = PIM!Activity.InitialNode.name;

11 PSM!StateMachine.Region.subvertex ∪ {off ,booted,idle}
12 if PIM!Activity.hasStereotype('DSL::ReadSensor') == TRUE then
13 PSM!StateMachine.Region.subvertex ∪ {reading};
14 endif
15 if PIM!Activity.hasStereotype('DSL::Send') == TRUE then
16 PSM!StateMachine.Region.subvertex ∪ {sending};
17 endif
18 else
19 return;
20 flow:= getNextControlFlow(PIM!Activity);
21 repeat
22 if flow.source.hasStereotype('DSL::Radio') == TRUE then
23 --Add alias values for inteface and component
24 transition ∪ AddTrigger();
25 transition ∪ AddEffect();
26 --Check the action after the radio initialization
27 if flow.target.hasStereotype('DSL::Timer') == TRUE then
28 --Define the apropriate model for the RADIO->TIMER flow
29 endif
30 if flow.target.hasStereotype('DSL::ReadSensor') == TRUE then
31 --Define the apropriate model for the RADIO->READ flow
32 endif
33 if flow.target.hasStereotype('DSL::Send') == TRUE then
34 --Define the apropriate model for the RADIO->SEND flow
35 endif
36 (...)
37 endif
38 if flow.source.hasStereotype('DSL::Timer') == TRUE then
39 -- Add alias values for inteface and component component
40 transition ∪ AddTrigger();
41 transition ∪ AddEffect();
42 -- Check the action after the radio initialization
43 if flow.target.hasStereotype('DSL::Timer') == TRUE then
44 -- Define the apropriate model for the TIMER->TIMER flow
45 endif
46 if flow.target.hasStereotype('DSL::ReadSensor') == TRUE then
47 --Define the apropriate model for the TIMER->READ flow
48 endif
49 if flow.target.hasStereotype('DSL::Send') == TRUE then
50 --Define the apropriate model for the TIMER->SEND flow
51 endif
52 (...)
53 endif
54 --Define the other rules analogously
55 (...)
56 PSM!StateMachine ∪ transition;
57 flow:= getNextControlFlow(PIM!Activity);
58 until(flow == NULL)
59 return PSM!StateMachine;
60 end.

123

www.manaraa.com

960 T. Rodrigues et al.

Fig. 8 A snippet of the M2M
transformation code to generate
the PSM for the TinyOS
platform

Fig. 9 A snippet of the M2T
transformation to generate
TinyOS platform source code

Fig. 10 A snippet of the code
generated for the Smart Home
application

1 #include "room.h"
2
3 module RoomC {
4 uses interface Read<uint16_t> as GetSamples;
5 uses interface Boot as InitialNode1;
6 uses interface AMSend as SendMyData;
7 uses interface Packet;
8 uses interface AMPacket;
9 uses interface SplitControl as ConfigureRadio;
10 uses interface Timer<TMilli> as LittleTimer;
11
12 } implementation {
13 (...)
14}

2.2 Application engineering

This section presents all the activities that the WSAN appli-
cation developers should perform during the application

engineering process to generate executable source code for
a chosen WSAN platform. The artifacts needed to perform
the application engineering are provided by the domain engi-
neering andwere developed by theArchWiSeN’s developers.

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 961

The activity diagram presented in Fig. 11 is divided in three
swimlanes separating the activities by their respective actors,
namely domain expert, network expert, or automatically per-
formed by the ArchWiSeN infrastructure.

The first activity in the diagram (Fig. 11), called “Require-
ments Analysis,” is performed by both developers (domain
expert and the network expert), where these actors gather
all information needed to build the target WSAN applica-
tion. During this activity, the domain and network experts
get all information needed to build the application. This
requirements analysis is a traditional activity of requirements
elicitation carried on as part of any software development
process. The software artifacts produced as outcome of this
activity (UMLdiagrams as use cases, textual documents, etc)
represent the system requirements and compose the CIM,
which will be used in further phases. Therefore, the CIM is
actually a set of requirement documents that include func-
tional (related to the application logic) and non-functional
requirements (related to the configuration of theWSAN plat-
form). These requirements are used by the domain expert
in the “Model PIM” activity. The outputs of this activity
are the UML activity and class models enhanced by the
WSAN UML profile. At the same time, as a typical WSAN
development scenario, the network expert starts the “Choose
Platform” activity, to evaluate the available platforms and
choose the one that best meets the elicited requirements.
The “Choose Platform” activity is not a modeling activity.
Instead, it represents a design decision to be made by the
network expert on the implementation platform to be used.
Network experts are developers that have a deep knowledge
in existing WSAN platforms, including their requirements
and limitations. Thus, knowing the application requirements
from the CIM and having the knowledge of the WSAN field,
this expert can chose the platform that best fits the applica-
tions needs.

With the information modeled by the domain expert in the
Model PIM activity and knowing the platform that best fits
the application requirements, the network expert is able to
perform the “Apply Configuration Marks” activity and edit
the model to insert the system’s properties according to the
non-functional requirements. The MDA approach specifies
the use of UML stereotypes to detail models by addingmarks
to the model. These properties denote characteristics such as
the network protocol, node hardware specification, andmore.

Following, the “Verification” activity will be manually
performed by both developers in order to check whether all
modeled information meets the application requirements. If
any requirement is not met, all development process should
start again with the “Requirement Analysis” activity, but
maintaining all the already modeled information so as only
the necessary editions need to be done. Sometimes not all the
requirements can be guaranteed due to the particular char-
acteristics of these systems. Therefore, developers need to

re-analyze the requirements to re-model parts of the appli-
cation. This does not mean that the entire requirements
elicitation phasemust be re-done. Instead, it should be refined
as it is commonly done in iterative and incremental software
development processes. Usually the initial version of the
requirements document can have a lot of imprecision because
it can be based in an informal and/or incomplete notion of
the system scope. The requirements refining process aims
to adjust the requirements into more realistic and precise
documents to help the developers to ensure that all the
requirements are met.

If all application requirements are met, the “Apply trans-
formation M2M” activity will be performed by the MDA
infrastructure (ArchWiSeN). Such activity takes as input the
PIM instance (Application UML Model) to generate as output
a PSM instance that represents the realization of the appli-
cation in the specific platform chosen by the network expert.
After this activity, the generated PSM can be refined by the
network expert in the “Refine Model” activity in order to
augment the model with information like network-related
specificities of the target platform or choosing an application
library that best fits the application non-functional require-
ments. For instance, the network expert can define policies
for saving network resources, as energy, by selecting a partic-
ular set of components that are not automatically configured
by the M2M transformation. This refinement will be usu-
ally performed through extra M2M transformations at the
PSM level but can also be performedmanually by editing the
model to add or modify properties. Considering the TinyOS
platform, such refinement encompasses the switching of a
target component implementation automatically added by
the transformation into a specific, and more tailored, com-
ponent as decided by the developers. A PSM refinement can
be done by following three steps: (1) removing the compo-
nents that are declared, but are no longer used, (2) adding the
new components, and (3) carrying out the wirings between
the components and interfaces being used. As these changes
occur at the PSM level and our approach does not implement
bi-directional transformations, such changes are not trans-
posed to the PIM level. On the other hand, the code generated
from M2T will respect the PSM modifications. Unfortu-
nately, re-running the M2M transformation will erase the
manual changes made to the PSM model. Our approach cur-
rently does not tackle the issue of synchronization between
PIMandPSMwhen amanual edition at the PSM level occurs.

Finally, the “Apply M2T Transformation” activity is
accomplished. This activity has two inputs: (1) the PSM
model refined by the network expert and (2) the chosen plat-
form code templates. It generates, as output, the application
source code to be deployed in the sensor nodes. Thegenerated
code is then refined by both developers (each one regarding
his/her specific knowledge) in the “Refine Code” activity in
order to add improvements such as application-specific func-

123

www.manaraa.com

962 T. Rodrigues et al.

Fig. 11 Activity diagram representing the process to develop a WSAN application

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 963

tions or protocol parameters not automatically generated by
the MDA transformation.

As previously mentioned, WSAN applications are devel-
oped according to two viewpoints. The first is the application
domain experts’ viewpoint and the second is the network
experts’ viewpoint. Building WSAN applications using the
proposed MDA approach promotes the division of respon-
sibilities among developers of these different viewpoints,
allowing them to use their specific knowledge and skills and
unburdening them from dealing with requirements that do
not belong to their expertise field. Through the diagram pre-
sented in Fig. 11, it is possible to notice that most activities
that involve some type of specific knowledge of a platform
or a domain are assigned to its respective expert. In this case,
the only exceptions are “Requirement Analysis” and “Val-
idation” activities that are performed by both developers to
create a bridge between both specifications. Furthermore,
the application engineering process promotes the separation
of the domain logics from the network-related logic. The
domain expert only needs to handle UML elements and later
to include codeof a function regardinghis/her specificknowl-
edge. On the other hand, the network expert only needs to
deal with network-related elements, both at modeling and at
code level.

Maintenance is a critical activity in WSAN applications.
The most common issues in such activity are the need of
handling platform-specific code and the lack of software
documentation. However, using the proposed application
engineering process, an application can be defined regard-
less of the chosen sensor platform; all information is kept
by UML models at a platform-independent level and can be
transformed into a platform-specific model for any actual or
future WSAN platform, depending only on the existence of
a respective transformation program and the platform meta-
model. Furthermore, actual and future developerswill always
be able to read and understand UML models patterns, mak-
ing an update on a WSAN system to be reduced to a simple
change in a standardized model.

3 Evaluation

The MDA approach presented in this paper was evaluated
in two ways: through a controlled experiment (detailed in
Sect. 3.1) and a proof-of-concept (detailed in Sect. 3.2). In the
controlled experiment, a quantitative evaluation was carried
out in order to assess theArchWiSeN in terms of productivity,
comprehension, and reuse. In the proof-of-concept, several
applications from different WSAN domains were developed
aiming at demonstrating in practice the employment of the
ArchWiSeN and to show ArchWiSeN’s usefulness in pro-
viding the separation of concerns between the two different
developers (domain expert and the network expert), and its

capability to manage the application’s requirements. The
technicalmeasured informations thatwere used to present the
benefits of our approach are: the time necessary to develop an
application, the generated number of lines of code, the time
necessary to introduce new requirements, and the developers
opinion on ease of use and usability.

3.1 Controlled experiment

Wehave conducted a controlled experiment in order to verify
whether the proposed application engineering process and its
associated MDA artifacts meet the goals of our paper (stated
in Sect. 1) and also to assess the complexity and benefits
of using ArchWiSeN when compared to traditional methods
for the development, requirement elicitation, and represen-
tation of WSAN applications. The planning (Sect. 3.1.3)
of the experiment reported in this section is based on the
guidelines proposed in [2], a widely cited reference for
experimental design in software engineering. The execu-
tion of the controlled experiment is based on obtaining the
development time from two different groups composed of
participants with the same profile, performing the same tasks
(Sect. 3.1.4) and using different approaches (ArchWiSeN or
code-and-fix). The two groups were both trained and had
access to the same materials. In order to obtain most of the
data required to analyze this controlled experiment, a post-
execution questionnaire was used to identify user’s thoughts
about ArchWiSeN’s usefulness, ease of use, and understand-
ability. We selected the questions used in the questionnaires
presented to the participants and we tested the internal con-
sistency of the given answers based on psychology studies
such as [7,9,20,28] and [23].

3.1.1 Experiment goals

Considering the stated goals of our work, we followed the
Goal Question Metric [4] (GQM) method to define our pri-
mary research goals, which are used to guide the conducted
experiment. As already mentioned, the goals of our work
are: (1) to define a process to create all MDA artifacts; (2)
to develop the MDA artifacts (PIM, PSM, and transforma-
tions); and (3) to define a process to buildWSANapplications
where developers can benefit of better productivity, compre-
hension, separation of concerns, and reuse. Once defined the
research goals, we refined them in a set of questions. Finally,
we defined metrics to provide the grounding to answer the
questions.

The following two research goals are considered by the
conducted controlled experiment.

First GoalTo analyze the application engineering process
and the MDA infrastructure (ArchWiSeN) with the purpose
of evaluating their effectiveness with respect to the under-

123

www.manaraa.com

964 T. Rodrigues et al.

standability and productivity in the development ofWSAN
applications.

Second Goal To analyze the application engineering
process and theMDA infrastructure with the purpose of eval-
uating their effectivenesswith respect to the reuse of artifacts
for WSAN application development.

The experiments were performed in the context of devel-
opers endowed with WSAN programming expertise using
both the code-and-fix and ArchWiSeN approach, creating
periodic, event-driven, and request–reply applications.

3.1.2 Questions

Following the guidelines presented in [4], the goals of the
controlled experiment are further detailed as research ques-
tions. The GQM questions are defined to characterize the
object of measurement with respect to a selected quality
issue and to determine its quality from a selected viewpoint.
Questions Q1–Q4 are related to the first research goal, tar-
geting the understandability and productivity characteristics,
while questions Q5–Q6 refine the second research goal, tar-
geting the reuse provided by the ArchWiSeN usage. The
answers to these questions were obtained through the assess-
ment of the metrics defined for the controlled experiment
(see Sect. 3.1.6).

Q1. Is the ArchWiSeN application engineering process
effective in terms of time to develop WSAN applica-
tions when compared to the code-and-fix approach?

Q2. How effective are the available UML profiles in Arch-
WiSeN to deal with the application development?

Q3. Do WSAN developers state that ArchWiSeN is easy to
use?

Q4. DoWSAN developers state that ArchWiSeN aids them
to develop a WSAN application?

Q5. How effective are the UML mechanisms used in
ArchWiSeN to deal with the implementation of new
requirements?

Q6. DoWSAN developers state that ArchWiSeN aids them
to reuse a WSAN application?

3.1.3 Planning, experimental units, and materials

The experiment was planned to occur in two phases. In
the first phase, the participants were trained in two top-
ics: (1) WSN application development using the TinyOS
programming model (including NesC language), and (2)
WSN application development using UML models and
ArchWiSeN. The participants answered a characterization
questionnaire aiming to collect information on professional
experience and skills in software development. In addition,
referencematerials as TinyOSdocumentation,ArchWiSeN’s
documentation, and slide presentations used in the training
were given to the participants. The second phase consisted in
developing applications using the two different approaches:
ArchWiSeN and code-and-fix. In this phase, the participants
were randomly divided into two groups (group I and group
II) and it was raffled which group worked first with the
ArchWiSeN approach and which group worked first with
the code-and-fix approach. Group I used the ArchWiSeN
approach first and code-and-fix latter, while group II used
the approaches in the reverse order (code-and-fix first, then
ArchWiSeN). The two groups performed the same five tasks
(described in Sect. 3.1.4). However, we assigned for each
participant a different order of task to be performed (Table 1
for further details).

Essentially, the profile of participants involved in the
experiments includes: (1) educational level; (2) level of
knowledge on the field of distributed computing; and (3)
level of knowledge on the field of WSAN platforms and
programming. The participants of this experiment are ten
Master Students of the Computer Science Course from the
Federal University of Rio de Janeiro, randomly organized
into two groups. All students have a similar profile, with
expertise in WSAN application development, specifically
in the TinyOS platform, learned during a distributed sys-

Table 1 Participants and tasks
configuration

Participant First day Second day

ArchWiSeN Code-and-fix ArchWiSeN Code-and-fix

P1 T1, T2, T3, T4, T5 – – T1, T2, T3, T4, T5

P2 T2, T3, T4, T5, T1 – – T2, T3, T4, T5, T1

P3 T3, T4, T5, T1, T2 – – T3,T4,T5,T1,T2

P4 T4, T5, T1, T2, T3 – – T4, T5, T1, T2, T3

P5 T5, T1, T2, T3, T4 – – T5, T1, T2, T3, T4

P6 – T1, T2, T3, T4, T5 T1, T2, T3, T4, T5 –

P7 – T2, T3, T4, T5, T1 T2, T3, T4, T5, T1 –

P8 – T3, T4, T5, T1, T2 T3, T4, T5, T1, T2 –

P9 – T4, T5, T1, T2, T3 T4, T5, T1, T2, T3 –

P10 – T5, T1, T2, T3, T4 T5, T1, T2, T3, T4 –

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 965

tems course. The participants signed a confidentiality and
consent form that explained the experiment procedure, ben-
efits, and their freedom to quit the experiment whenever they
wanted.

3.1.4 Tasks

To collect the metrics used in the experiment, a set of tasks
was planned to be executed by the participants as follows.
Table 1 summarizes the order of tasks given to each partici-
pant.

Task 1Create aWSN application for the TinyOS platform
to collect periodic data of light. The application requests the
WSN nodes to perform a sensing of the environment’s light
(every 10s) and repeat this procedure until gathering 10 sam-
ples of the light data. After the 10 samples are collected,
only the highest value obtained by the nodes are sent to the
sink node and then the data stored in the node’s memory are
cleaned. The data are received in the sink through a radio
broadcast communication. After receiving the information,
no particular action is taken by the sink.

Task 2 Create a request-response WSN application for
the TinyOS platform. For this application, after booting and
starting the radio, the application does not have to perform
any task, it only expects to receive a request from the sink.
The request should be received through a radio broadcast
communication.With the request arrival, the nodewill trigger
a counter to perform the temperature sensing every 5 s after
the request reception. When the reading is finished, the node
triggers a 20s timer to send the temperature data over the
network through broadcast. After sending the collected data,
the node should return to the initial state to wait for request
messages.

Task 3 Study the code/model of an oscilloscope applica-
tion. The application goal is to collect the current voltage of
the battery and to send this information to the sink node.
This task involves changing the source code/model con-
sidering the following new requirements. Requirement 1:
change the number of samples collected by the applica-
tion. Requirement 2: collect temperature data in addition
to the data already obtained and to save the information
in a similar way used in oscilloscope application. Require-
ment 3: decrease the frequency with which data arrive at the
sink.

Task 4 List the functional and non-functional require-
ments of a given structural heath monitoring application.

Task 5 List the functional and non-functional require-
ments of a given Smart Home application.

3.1.5 Hypotheses, variables, and constructs

This subsection describes: (1) the null hypotheses; (2) the
constructs, the hypothetical variables that are being mea-

sured, grouped into constructs to calculate their correlation;
and (3) the dependent and independent variables existing in
the experiment. For each primary research goal defined for
our experiment, the null hypotheses, denoted H0ij, and their
corresponding alternative hypotheses, denoted H1ij, need to
be derived, where i corresponds to the goal identifier, and
j is a counter when there is more than one hypothesis per
goal. For example, the null hypotheses H011H012 and H013
are related to the first goal, while the hypothesis H021 is
related to the second goal. The null hypotheses defined for
this experiment are:

H011 The use of ArchWiSeN is equivalent to the code-
and-fix development in terms of development time;
H012 The use of ArchWiSeN maintains the same degree
of efficiency in the production of software artifacts com-
pared to the code-and-fix approach;
H021 The use of ArchWiSeN maintains the same degree
of reuse of components compared to the code-and-fix
approach;
H013 The use of ArchWiSeN maintains the same degree
of understanding of the system compared to the code-
and-fix approach.

To answer the defined research questions as well as to
prove the formulated hypotheses true or false, the following
constructs were defined: development effort, requirements
comprehension, perceived ease of use, perceived useful-
ness, reuse effort, and perceived reuse. Such constructs
represent the properties that we wish to evaluate in the exper-
iment and they are measured by a set of metrics defined in
Sect. 3.1.6. These metrics constitute the dependent variables
(aka. response variables) of our experiment. The independent
variables (aka. predictor variables) defined to this experiment
are: (1) developmentmethods, (2) participants profile, and (3)
development environment.

3.1.6 Metrics

Since there is no standardized set of metrics available to eval-
uate the defined research questions, we specified our own
metrics tailored to the purpose of our evaluation. The intent of
thesemetrics is to quantitatively evaluate theArchWiSeNand
code-and-fix approaches in terms of constructs: (1) develop-
ment effort, (2) requirements comprehension, (3) perceived
ease of use, (4) perceived usefulness, (5) reuse effort, and (6)
perceived reuse. All the metrics used are specified in Table 2.
In all the equations, P represents the total number of partic-
ipants.

M1 is specified to evaluate the Development Effort
construct—this metric represents the total time required to
execute the experiment tasks by each group considering
both approaches (ArchWiSeN and code-and-fix). The goal
of M1 is to measure the time required to specify a com-

123

www.manaraa.com

966 T. Rodrigues et al.

Table 2 Metrics used in the
evaluation

Metric Variables

M1 = ∑
Task Duration{Ap;Gr} Ap = approach used by the participant to execute the tasks

Gr = group where the participant was allocated

M2 =
∑

Comprehension
P {Ap,Q} Ap = approach used by the participant to execute the tasks

Q = number of the question regarding requirements comprehension

M3 =
∑

Perceived Ease of Use
P {Q} Q = number of the question regarding perceived ease of use

M4 =
∑

Perceived Usefulness
P {Q} Q = number of the question regarding perceived usefulness

M5 =
∑

Reuse Task Duration
P {Ap} Ap = approach used by the participant to execute the tasks

M6 =
∑

Perceived Reuse
P {Q} Q = number of the question related to the perceived reuse

plete WSAN application using the available development
artifacts.

M2 is specified to evaluate the Requirements Com-
prehension construct—the goal of the M2 is to measure
the participant’s comprehension about application functional
and non-functional requirements, using the available models
for the different system views. Since a clear representation
of requirements positively affects the application develop-
ment, this metrics aids to answer question Q2. This metric is
measured computing data obtained through a questionnaire
based on the Likert scale [23].

M3 is specified to evaluate the Perceived Ease of Use
construct—the goal of M3 is to measure the participant’s
opinion about the usability of a given approach. This metric
captures the degree to which a person believes that using a
particular system would be free from effort [9].

M4 is specified to evaluate the Perceived Usefulness
construct—the goal of M4 is to measure the participant’s
opinion about the utility of a given WSAN development
approach. This metric indicates the degree to which a person
believes that using a particular system would enhance his or
her performance in a given development task [9].

M5 is specified to evaluate the Reuse effort construct—
the goal M5 is to measure the time needed to implement new
requirements in a preexisting WSAN application using the
development artifacts available in a given software devel-
opment approach. This metric is measured in terms of the
average time needed to implement new requirements into an
existing application.

M6 is specified to evaluate the Perceived Reuse
construct—the goal of M6 is to evaluate the participant’s
opinion about the reuse of theArchWiSeN artifacts regarding
WSAN application models. This metric indicates the degree
to which a person believes that he/she is capable of reusing
any existent software artifact in a given application.

Finally, Table 3 presents the correlations among the GQM
elements (goal, questions, and metrics) defined in the exper-
iment with the tasks performed by the participants and used
to extract the metrics.

Table 3 Correlation among GQM elements and tasks

Goals Questions Metrics Tasks

G1 Q1 M1 T1, T2, T3, T4, T5

Q2 M2 T4, T5

Q3 M3 T1, T2

Q4 M4 T1, T2

G2 Q5 M5 T3

Q6 M6 T3

3.1.7 Obtained data

This section summarizes the data collected and the performed
treatment of the data. The metrics regarding both goals are
obtained through the execution of the controlled experiment.
The data for M1 and M5 metrics are obtained through the
observation of the time spent by each participant to perform
each one of the tasks, while M2,M3,M4 and M6 metrics
are collected from the answers given to the survey question-
naires.1 All the results are organized by each metric. Since
the questionnaires were based on the Likert-type scales, a
validation of the internal consistency of the adopted scales is
needed [19]. We use the Cronbach’s alpha [7] index to ver-
ify the reliability since this index is widely used to analyze
Likert-type questionnaires. The Cronbach’s alpha index is
associated with the variation within an underlying construct
(Sect. 3.1.5) where as correlations between the items of a
construct increase the alpha index will generally increase as
well. The alpha index (α) ranges in value from 0 to 1; the
higher the score, the more reliable the generated scale is. An
acceptable value for the reliability coefficient is 0.7 [28], but
lower thresholds are sometimes used in the literature.

The metric M1 (development effort construct) was cal-
culated based on the time recorded for each participant

1 A table with the questions and the obtained answers can be found at
http://www.consiste.dimap.ufrn.br/projects/archwisen/.

123

http://www.consiste.dimap.ufrn.br/projects/archwisen/

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 967

Table 4 Experiment duration
per participant

ArchWiSeN Code-and-fix ArchWiSeN Code-and-fix Total

Duration (hh:mm:ss)

P1 02:33:00 – – 03:23:00 05:56:00

P2 01:54:00 – – 03:36:00 05:30:00

P3 01:56:00 – – 00:59:00 02:55:00

P4 01:36:00 – – 01:10:00 02:46:00

P5 02:43:00 – – 04:05:00 06:48:00

P6 – 02:34:00 01:30:00 – 04:04:00

P7 – 02:09:00 01:08:00 – 03:17:00

P8 – 02:36:00 01:37:00 – 04:13:00

P9 – 02:39:00 01:46:00 – 04:25:00

P10 – 02:45:00 01:30:00 – 04:15:00

Total 10:42:00 12:43:00 07:31:00 13:13:00 20:09:00

Table 5 Experiment duration per task

Average time (hh:mm:ss) Reduction (%)

ArchWiSeN Code-and-fix

Task 1 00:35:42 00:44:06 19

Task 2 00:22:18 00:31:18 29

Task 3 00:11:30 00:22:12 48

Task 4 00:19:06 00:27:18 30

Task 5 00:20:42 00:30:42 33

to finish each task. Table 4 presents the experiment dura-
tion for each participant considering the execution of both
approaches. Table 5 shows the average time for each task
considering the results for all participants. The results show
that there is an average of 25.2% time reduction for the
task execution time when comparing ArchWiSeN with the
code-and-fix approach. This result points to a reduction in
development time of WSAN applications when using the
proposed approach. Tasks 1 and 2 (development) had an aver-
age reduction of 24% regarding the development time when
compared to code-and-fix approach considering a simple
application development project. Furthermore, when using
ArchWiSeN the time for execution of Task 3 (Reuse) was
48% lower than when using the code-and-fix approach.
Finally, Tasks 4 and 5 (understanding) had an average reduc-
tion of 31.5% compared to code-and-fix approach meaning
a reduction in the time required to understand the require-
ments of an application. Considering the development of
WSAN applications, the obtained results are quite satisfy-
ing because the applications presented as development tasks
(1 and 2) were not complex like the applications presented
in the comprehension tasks (4 and 5). This could mean that
the more complex the task is, the best benefits the developers
will have when using our approach.

For M2 (comprehension construct) the obtained data
shows that all participants (100%) stated that it is hard to
comprehend an application developed using the code-and-fix
approach, while with the ArchWiSeN approach the partic-
ipant’s opinions are divided among Neutral (40%), Easy
(30%), and Very Easy (30%). Moreover, ArchWiSeN also
achieved better results when compared to code-and-fix when
considering the understanding of functional requirements.
However, for the non-functional requirements the partici-
pants did not reach a consensus about comprehension when
using ArchWiSeN. Nevertheless, 80% of the participants
stated that it is hard to comprehend non-functional require-
ments using the code-and-fix approach. Finally, 70% of the
participants answered that to understand the physical orga-
nization of the network in the application developed with
ArchWiSeN is a very easy task, while 60% answered that
it is very hard to perform the same task with the code-and-
fix approach. The α indexes obtained for the ArchWiSeN
and code-and-fix comprehension constructs are, respectively,
α = 0.7593 and α = 0.56329. However, the second α index
indicates a potential poor internal consistency among the
answers given to the code-and-fix approach. The inconsis-
tency may have been caused by the participant’s different
expertise with low-level programming.

The data obtained for M3 shows that 70% of the partic-
ipants strongly agreed that was easy to use the application
engineering process defined in ArchWiSeN. Moreover, 60%
of the participants agreed that they find easy to become skill-
ful at using ArchWiSeN. However, 50% of the participants
(neutral or disagree) answered that ArchWiSeN is not flexi-
ble enough to interact with. The α index calculated with the
results obtained for the construct perceived ease of use is
α = 0.7898 which denotes an acceptable result.

For the metric M4 (perceived usefulness construct) the
results show that 80% of the participants find ArchWiSeN
useful for WSAN application development. The α index cal-

123

www.manaraa.com

968 T. Rodrigues et al.

culated with the results obtained for the construct perceived
usefulness is α = 0.8287which denotes an acceptable result.

The data obtained for metric M5 (reuse effort construct)
show that when usingArchWiSeN, the participants were able
to obtain the best result (48%) in terms of time reduction for
the reuse task (Task 3) as shown in Table 5.

The last metric, M6, had an unacceptable result (α =
0.0624) for the perceived reuse construct regarding the ques-
tions related to the ArchWiSeN. With such α value nothing
can be assumed from the obtained answers. However, for
the code-and-fix perceived reuse construct the α index value
was α = 0.7866 which denotes acceptable results. For the
perceived reuse while using the code-and-fix, the partici-
pants responses were in average neutral (50%) about making
application changes. Moreover, for platform changes, the
participants’ average opinion is that making these changes
are between hard and very hard (23%).

3.1.8 Hypothesis testing

This subsection aims to analyze the obtained results of the
controlled experiment in order to verify the hypotheses pre-
sented in Sect. 3.1.5. For this purpose, we must answer the
questions (Q1 to Q6) using the respective collected metrics.

Q1. Is the ArchWiSeN application engineering process
effective in terms of time to develop WSAN applications
when compared to the code-and-fix approach?

The time spent to execute all tasks for the group that
started with the ArchWiSeN approach (named group 1) was
calculated by M1 10:42:00hours, while the time spent to
execute all tasks by this same group using the code-and-fix
approach was calculated by M1 as 13:13:00hours. The time
spent to execute all tasks for the group that started with the
code-and-fix approach (group 2) was calculated by M1 as
12:43:00hours, while the time spent to execute all tasks by
this same group using the ArchWiSeN approach was M1

7:31:00hours.
As shown inFig. 12,

∑
Task Duration{ArchWiSeN,Group 1}

+
∑

Task Duration{ArchWiSeN,Group 2} <
∑

Task
Duration{code−and−fix, Group1}+

∑
Task

Duration{code−and−fix,Group 1}. With this answer, the null
hypothesis H011 can be rejected and the alternative hypoth-
esis H111 “The use of ArchWiSeN is more efficient to the
code-and-fix development in terms of development time”
is accepted. Therefore, the answer to this question is: The
obtained results indicate that using ArchWiSeN costs less
time to the developers perform the WSAN programming
tasks and then using the code-and-fix approach indepen-
dently of which approach is used first.

Q2. How effective are the available UMLprofiles inArch-
WiSeN to deal with application development?

The average value results for each question related to
M2 are shown in Fig. 13. The high values of M2 for Arch-

10:42:00 13:13:00

07:31:00
12:43:00

0:00:00

4:48:00

9:36:00

14:24:00

19:12:00

24:00:00

28:48:00

ArchWiSeN Code-and-fix

Ti
m

e

Approach

Time to perform tasks per approach

G2

G1

Fig. 12 Chart showing the sum of time required to perform each task
by each approach

3.9 3.7
3.1

4.4

1 1.2 1.3

2

0

1

2

3

4

5

Q1/Q2 Q3/Q4 Q5/Q6 Q7/Q8

Li
ke

rt
 S

ca
le

Ques�ons

Comparison of requirements comprehension for
ArchWiSeN and TinyOS

ArchWiSeN

TinyOS

Fig. 13 Chart comparing the answers given by the participants about
their comprehension using ArchWiSeN and TinyOS

WiSeN in all questions mean that the participants consider
that it is very easy to read and understand the application’s
requirements from the available models. Therefore, the null
hypothesis H013 can be rejected and we can accept the alter-
native hypothesis H131 “The use of ArchWiSeN increases
the understanding of the system compared to the code-and-
fix approach”. Therefore, the answer to this question is: The
use of models and profiles provided the developers with
an abstraction level that was inexistent in the code-and-
fix approach. Such abstraction level positively helped the
developers to comprehend the applications presented in this
experiment. Thus, we can consider that the proposed UML
profiles are effective to properly abstract domain and network
requirements.

Q3. Do WSAN developers state that ArchWiSeN is easy
to use?

For each question, the average values for M3 (Fig. 14a)
were 4.7, 4.5, 4.2, 3.6, 4.6, and 4.5, respectively. Considering
all the cases, it is possible to assume that the participants
consider ArchWiSeN easy to use. Therefore, the answer to
this question is: In this experiment, the developers state that
the ArchWiSeN is an approach that is easy to use.

Q4. Do WSAN developers state that ArchWiSeN aids
them to develop a WSAN application?

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 969

Fig. 14 a Chart for the
perceived ease of use answers
given by the participants. b
Chart for the perceived
usefulness answers given by the
participants

4.7 4.5
4.2

3.6

4.6 4.5

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6
Li

ke
rt

 sc
al

e
Ques�ons

(A)Perceived Ease of Use for
ArchWiSeN

4.6
4.5

4.4
4.5

4.3

4.8

4

4.2

4.4

4.6

4.8

5

Q1 Q2 Q3 Q4 Q5 Q6

Li
ke

rt
Sc

al
e

Ques�ons

(B)Perceived Usefulness for
ArchWiSeN approach

For each question, the average values for M4 (Fig. 14b)
were 4.6, 4.5, 4.4, 4.5, 4.3, and 4.8, respectively. Considering
all the cases, it is possible to assume that the participants
consider ArchWiSeN useful. The values of M4 in Q1, Q2,
Q3, and Q4 allow the null hypothesis H012 to be rejected
and the alternative hypothesis H112 “The use of ArchWiSeN
increases the efficiency in the production of software artifacts
compared to the code-and-fix approach” to be accepted. The
answer to this question is: In this experiment, the developers
state that they consider ArchWiSeN useful to develop WSAN
applications.

Q5. Howeffective are theUMLmechanisms used inArch-
WiSeN todealwith the implementationof new requirements?

The obtained value M5 for the ArchWiSeN approach was
00:11:30hours, while with the code-and-fix approach the
obtained value was 00:22:12hours. Since
∑

Reuse effort{ArchWiSeN} <
∑

Reuse effort{code−and−fix},
the reuse effort for the implementation of new require-
ments with the ArchWiSeN approach is lower than using
the code-and-fix approach. In other words, it takes less
time to implement new requirements with ArchWiSeNwhen
compared to the code-and-fix approach. The answer to this
question is: The developers took less time to perform the
reuse tasks with ArchWiSeN.

Q6. Do WSAN developers state that ArchWiSeN aids
them to reuse a WSAN application?

The results for M6 were inconclusive. Therefore, the
answer obtained in question Q6 does not help to evaluate the
null hypothesis. However, considering the answer obtained
in Q2 and Q5 the null hypothesis H021 can be rejected and
the alternative hypothesis H121 “The use of ArchWiSeN
increases the reuse of components compared to code-and-fix
approach” can be accepted if we consider the reduce effort
for reuse and that a better comprehension can help developers
to maintain and reuse a WSAN system. The answer to this
question is: The developers did not declare that ArchWiSeN
helps to reuse an application.

3.1.9 Threats to validity

Wecan enumerate three aspects as threats to the validity of the
performed experiment: construct validity, internal validity,
and external validity.

Construct validity means that the independent and depen-
dent variables accurately model the abstract hypotheses [33].
This threat was addressed in our work: (1) by using the
GQM approach to organize the necessary steps to determine
the links between the experiment goals and the hypothesis
testing; (2) by using the strategy proposed by [34] (con-
cept, design, preparation, execution, and analysis) to design
and execute the software engineering experiment; and (3) by
using standardizedquestions [9] and scale [23] tomeasure the
participants opinions. Moreover, some of the defined metrics
have a certain subjective degree, based on the judgment of
the participants. To address this threat, the questionnaire was
formulated considering the participant’s opinion in a Likert
scale [23].

Internal validitymeans that changes in the dependent vari-
ables can be safely attributed to changes in the independent
variables [33]. In the conducted experiment, the depen-
dent variables are (1) development effort, (2) requirements
comprehension, (3) perceived ease of use, (4) perceived use-
fulness, (5) reuse effort, and (6) perceived reuse. They all are
strictly related to the set of metrics defined specifically for
this experiment. Regarding internal validity, we identify the
following threats:

(A) Differences between participants: Different levels of
experiencewithUMLandNesC programming language
could lead to biased results. We tried to minimize this
threat by including a training session on such languages.

(B) Differences between tasks: Five different tasks were
presented to the participants. We mitigated this threat
with the design of the experiment, in which each group
worked over two laboratory sessions, alternating the
different tasks with random order. The survey question-

123

www.manaraa.com

970 T. Rodrigues et al.

naire showed the participants completely understood
their tasks.

(C) Fatigue effects: The experiment was organized in two
daily sessions of 5hours. During the experiments, the
participants were observed by a researcher and no signs
of fatigue were detected because the participants were
free to leave the laboratory once a Task was completely
done.

(D) Experiment bias: The experiment design could intro-
duce a learning process that affects the participant
opinion. Moreover, the participant previous information
about the used approach could lead to biased results.
These threatswere addressed by a consistent experiment
planning phase supported by the available literature.
The participants were randomly organized: (1) by treat-
ments, (2) tasks,; and (3) computers. As explained in
[34], by randomly assigning treatments to experimental
units it is possible to keep some treatment results from
being biased by sources of variation over which you
have no control. Moreover, the randomization of tasks
order also contributes to reduce the impact of a possible
learning process since no participant will perform the
tasks in the same order with the same treatment.

(E) Tester and participant background influence: The tester
opinion or the participant’s background information
about the experiment execution could lead to biased
results. This threat was addressed by not involving the
participants with the experiment in any other level than
the experiment execution. The participants and the tester
were not classmates; some of them were only under
supervision of the same professor. The participants were
invited only knowing that the experiment would involve
wireless sensor networks and a software engineering
technology. Furthermore, neither the participants nor the
tester could know how the tasks were organized before
the experiment execution due the randomly assignment.

External validity means that the study’s results generalize
to settings outside the study [33]. It is necessary to per-
form experiment replication with different tasks to confirm
or contradict the results. However, the process and materials
presented in this paper are enough to replicate the experi-
ment.

3.2 Proof-of-concept

This subsection illustrates the use of ArchWiSeN to build
several WSAN applications as a proof-of-concept to evalu-
ate the proposed development process. In this subsection,
we assess the ArchWiSeN’s goal “to define a process to
build WSAN applications where developers can benefit of
better productivity, comprehension, separation of concerns,
and reuse.” While in Sect. 3.1 the focus was to quantify pro-

Table 6 Proof-of-concept applications

Application (only considering the node) Generated LoC

Smart home for lighting and temperature control 98

Forest fire detection 56

Oscilloscope 109

Perimeter access control 112

Supply chain control 73

Control of humidity and temperature 109

Remote home control 63

Monitoring of volcanoes 72

Fall detection 140

Structural health monitoring 174

ductivity, comprehension, and reuse, here in Sect. 3.2 we
focus on depicting the process behind the numbers achieved
in the controlled experiment and to clarify how each Arch-
WiSeN’s artifact is used during the process so as to create
a new application. This proof-of-concept also demonstrates
how the separation of concerns is achieved when using the
application engineering process. For this PoC, we developed
all the applications presented in Table 6. However, in this
paper we describe only the application engineering process
the most complex application, namely the structural health
monitoring (SHM), for the smart building domain followed
by two scenarios of changes where we illustrate how devel-
opers should proceed when the application’s requirements
are modified.

Finally, in Sect. 3.2.2 we discuss the results through a
qualitative analysis. All developed applications will be sum-
marized in Table 6 describing the number of lines of code
considering the TinyOS as the target platform for this proof-
of-concept.

3.2.1 Structural health monitoring application description

The focus of structural health monitoring (SHM) applica-
tions is to detect and localize damages in civil structures.
All structures react to vibrations, either forced or caused by
the environment (natural). Natural vibrations can be gener-
ated by earthquakes, winds, moving vehicles, waves, among
others, while forced vibrations are generated by shakers and
other devices.

The work presented in [37] proposes a localized SHM
algorithm supported by multilevel information fusion tech-
niques to enable detection, localization, and extent determi-
nation of damage sites. We describe the requirements of this
SHM application.

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 971

The application works with three different types of
devices: sensor nodes, cluster heads (CH), and sinks.
As described in [37], the SHM application operates
following five stages (setup, data collection, extract
peaks, damage detection, and report). In the setup stage,
the network is configured and the sensors collect the
accelerometers data of the monitored structure. Such
initial reading, also known as initial signature, consists
in the response of a “healthy” structure and is used to
compare to further sensors measurements. Each sensor
is responsible for sensing the structure during a data
collection stage, which starts with the sink node trans-
mittingmessages to the CHs. CHs request the sensing of
the structure by the sensors in their respective clusters.
Then, each sensor node collects the acceleration mea-
surements relative to its physical position. Such data
collection is represented in the time domain. After that,
a fast Fourier transform (FFT) is performed by each
sensor over the collected acceleration signals to con-
vert measurements to the frequency domain. Next, a
method for extracting frequency values from the peaks
of the power spectrum generated by the FFT is used. At
later stages, each CH also receives the subsequent signa-
tures, denoting accelerometer information provided by
the sensors of the structure. CHs are responsible for per-
forming the damage detection, determining the damage
location and extent through the calculation and analysis
of damage coefficients. Each CH, after collecting the
signatures from all sensor nodes of its cluster, performs
a comparison between these values and the respective
initial signatures from the respective sensors, to check
whether the structure is damaged or it has been tem-
porarily changed due to some external event.

Following the process shown in Fig. 11, both develop-
ers (domain and network experts) perform “Requirements
analysis,” generating as output theMDACIM (computation-
independent model), a document that describes the domain
and the requirements of the system. This activity can be
done using any existing requirements analysis technique. The
process is divided into parallel activities that will be per-
formed by each developer within his/her area of knowledge.
The domain expert starts the “Model PIM” activity to cre-
ate a UML activity diagram that best represents the required
WSAN application.

Figure 15 illustrates the actions specified by the domain
expert to be executed by the sensor nodes running the SHM
application. At the initialization of the application, all nodes
will perform their radio configuration (cluster head and sink
not shown in figure). Then, the sensor will wait for some
messages sent either by the cluster head or by the sink to

perform its tasks that are: (1) sample the accelerometer and
perform the fast Fourier transform function; (2) send a mes-
sage with the frequency sample data; and (3) send a message
with the accelerometer sample data. Then, the domain expert
will model the application’s structural view.

Figure 16 illustrates the model developed by the network
expert representing the structural view for the application’s
PIM. The described application works with two differ-
ent regions, TargetArea and ControlRoom. The TargetArea
region represents the building floor where the sensor nodes
and cluster heads will be deployed, while the ControlRoom
region represents the room where the sink node is deployed.
The TargetArea region contains two Nodegroups (sensor
and cluster head) and the ControlRoom region contains one
Nodegroup called sink. This division between Nodegroups
allows the network expert to define which type of hardware
will be used at each different group and how they communi-
cate with each other. As a parallel activity, the network expert
analyzes the CIM model and chooses which sensor platform
will best fit the requirements of the target application. In this
case study,we consider thatTinyOSwas chosen. Finally, both
developers will perform the “Verification” activity. Then, the
transformationswill be executed to generate the application’s
source code.

Scenario of Change 1 Changing the network-level pro-
tocols. A change in the network logic topology or in the
nodes density (e.g., the need to deploy additional nodes or to
remove nodes from the network, thus increasing/decreasing
its density) may require the selection of a new communi-
cation protocol to run on the sensor nodes. By using the
proposed approach to address such need, the network expert
must make changes to the generated PSM. This process is
carried out during the activity “Refine Model.” In order to
modify the protocol used by themodel representing the appli-
cation configuration (The TinyOS component), which has
been automatically generated by the MDA infrastructure,
three steps are required: (1) to remove the components that
are declared, but are no longer used, referring to the for-
mer communication protocol, (2) to add the new components
that implement the new protocol, and (3) to carry out the
wirings between the components and interfaces being used.
This scenario shows that when the required change occurs
at the network level, all the domain-related aspects remain
unchanged and are transparent to the network expert. In addi-
tion, these changes are carried out without the participation
of the domain expert.

Scenario of Change 2 Changing in the application-
specific requirements. Such changes should be handled by
the domain expert and occur at the PIM level. A typical case
is the change in application QoS parameters. Such require-
ment can be interpreted as a change in the adopted energy
policy or a change in the data transmission rate. Tomodify the
energy policy, the domain expert should increase the value

123

www.manaraa.com

972 T. Rodrigues et al.

Fig. 15 SHM activity diagram excerpt showing the actions performed by the sensor node

Fig. 16 Structural view of the SHM application

of the RadioConfigUnit parameter to change the duty cycle
of the nodes and extend the interval of the radio sleep timer.
To change the data transmission rate, the domain expert can
simply change the interval value of the timer that controls the
waiting time before each data transmission. Thus, the M2M
transformation will generate the PSM model using the set-
tings that match the choice made by the domain expert. All
these changes can be made without requiring the participa-
tion of the network expert.

3.2.2 Qualitative analysis

As previously mentioned in Sect. 3.2, ten applications
were developed in order to complete this proof-of-concept.
Although the application engineering process is described
only one application, all the ten applications were modeled
and implemented as part of the proof-of-concept. Table 6
summarizes the data obtained during the execution of the
application engineering process for each of these applica-

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 973

tions. It can be noted that ArchWiSeN was able to generate
code for applications in many different domains while pre-
serving the separation of interests among the developers
involved in building application process. The generated code
can hardly be divided into the pieces of code representing
application’s logic, configuration, and routing, since such
parts are mostly scattered throughout all the TinyOS’s events
and commands implementations. In fact, such a characteris-
tic of scattering application logic in the code, while coupling
application code with lower-level protocol code, is one of the
limitations of traditional programming for WSAN platforms
and which motivated our proposal.

Through this proof-of-concept, it is evident that the
approach proposed in this paper can be successfully applied
for WSAN application development. Thus, in this proof-
of-concept we demonstrated through the development of
different WSAN applications the process to use ArchWiSeN
for generating all the necessary code while preserving the
separation of interest among developers even in situations
when changes of parameters are required.

4 Related work

We start this section comparing our approach with two others
that share our main goal (that is, to facilitate buildingWSAN
applications) but use a different approach, namely software
product lines (SPL). In [17] the authors present a process
for the SPL configuration of an AmI (Ambient Intelligence)
middleware. In such approach, in order to build a custom
middleware to perform a specific task, it is only necessary to
define a set of high abstraction features and a few parameters.
Using this process, the approach presented in [17] is able to
generate all the source code required to run a target appli-
cation in the J2ME platform. Unlike our approach, in [17]
there is not a separation of concerns between the applica-
tion developers involved. Moreover, in the proposed process
and feature model there is no explicit separation between
domain and network features. In the work described in [6],
the authors present an SPL approach for generating transpar-
ent autonomic systems to the end user. For the development
of such systems, the authors use amodel-driven development
approach following the variability modeling principles. The
authors also use a simple example of Smart Homes to ana-
lyze their approach.Despite the success of theworkdescribed
in [6], the authors do not present techniques for exploiting
reuse ofmodels, and they only focus on the applicationmain-
tenance. Moreover, features like communication and routing
data are not mentioned for the configuration of the wire-
less sensor network, making it unclear how this information
could be implemented and deployed in the nodes running the
application.

Baobab [1] is a framework based on meta-modeling for
designing WSN applications and generating the correspond-
ing source code. A component-based approach is adopted
as the (domain-specific languages (DSL) and the WSAN
application is interpreted as a set of components that inter-
act via an event-based push model. The transformation of
the model into executable code and the generation of the
middleware are performed by a template-based code gener-
ator. Baobab allows users to separately define functional and
non-functional aspects of a system (as software models), to
validate them, and to generate the source code. Although
Baobab provides an independent platform approach, it is not
designed to enable the development of WSAN applications
without requiring specific platform knowledge. Thus, the
separation of concerns between developers can be affected
mainly by the need for WSAN-specific knowledge by the
domain expert. Moreover, despite to be open for other plat-
forms, the authors do not demonstrate how the procedure
to extend Baobab is done, or which methodology should
be adopted in case of the need to implement new software
artifacts for the Baobab framework. Differently from such
a work, our proposal does not adopt a component-based
solution. Instead, ArchWiSeN was designed to be extended
through the domain engineering process using UML profiles
and it is agnostic to the adopted design solution or patterns.
Our approach was created to support the addition of multiple
platforms by following the domain engineering process. The
component-based approach used inBaobab does not separate
components in a platform-independent way, making future
extensions to other platforms to require a complete recon-
struction of all components. Moreover, it do not address
the separation of concerns between the different types of
developers involved in WSAN application building. Thus,
the development process may require knowledge that is not
from the developer’s expertise area.

Make-sense project [11] aims to improve WSN program-
ming by allowing developers to express their applications
mainly via the usage of business process modeling. Its main
goal is to break the barrier for adoptionofWSNs in real-world
applications, notably in business processes. Such project has
similar goalswith ours but do not specifywhichmethodology
is employed to achieve such goals.

In [39] the authors propose aWSANdevelopment process
with three different models according to the granularity of
specification: (1) network, (2) group of nodes, and (3) indi-
vidual node. According to the authors, this separation has
been proposed because inWSANdevelopment it is necessary
to build or modify a low-cost prototype in order to optimize
performance, and such feature cannot be solved by a sin-
gle model. Although the construction of various models is
proposed in [39], such models describe only static features
and are not able to describe the application behavior, which
is a crucial part of the WSAN system modeling. Moreover,

123

www.manaraa.com

974 T. Rodrigues et al.

the authors did not consider the participation of developers
with different expertise areas and excluded several impor-
tant features of lower abstraction level specification, such as
the communication protocol, the network topology, and the
device types.

In [16] the authors present ACOOWEE, a framework
where Sun SPOT sensors can be programmed to perform col-
laborative tasks by setting a sequence of tasks through UML
activity diagrams extended by a profile. Despite the similar-
ity with our proposed MDA approach, there are differences
in the presentation of different views where experts should
act during the application development process. ACOOWEE
framework does not separate the model elements in different
views; it only includes the view where the developers indi-
cate the application behavior. No information about how the
nodes are organized or the differences between nodes capa-
bilities can be modeled. Moreover, our MDA approach uses
an independent platform level, which enables portability of
the application modeled across different platforms.

SinceWSAN can be considered as a specialization of dis-
tributed, real-time, and embedded system (DRE), it is also
important to compare our approach with other works that
are related to this type of systems. DRE and WSAN systems
share the same issues regarding heterogeneity, hardware lim-
itations, and the low-level programming languages available
to developers. Middleware platforms are often used as solu-
tion to tackle these issues inDREsystems; however, choosing
the right middleware can also be a challenging problem.

In [5] the authors present an MDA approach using UML
for the specification of WSAN applications for TinyOS plat-
form. The presented approach uses and extends the modeling
and analysis of real-time and embedded systems (MARTE)
profile. Although our proposal also uses views to separate
the concerns within the WSAN profile, the inclusion of a
network configuration view to adapt the applications to the
chosen platform provides more modeling capabilities. More-
over, in [5] there is no separation of concerns between domain
and network characteristics. This feature carries the platform
concepts to the application engineering process, thus requir-
ing that the developers have knowledge of both domain and
network aspects.

CoSMIC [38] is anMDAgenerative tool for DRE (distrib-
uted real-time and embedded) middleware and applications.
The CoSMIC tool allows developers to model their applica-
tions in a high abstraction level and to generate a middleware
specifically customized for the target application while
respecting the defined QoS requirements. By using CoSMIC
tool, developers can achieve the reduction in the lifecycle
costs of complex DRE applications. Another feature in the
CoSMIC tool is the capability of ensuring that requirements
are met and to validate system structure and/or behavior dur-
ing the application design phase. Differently from CoSMIC,
ArchWiSeN separates the development models in two dif-

ferent levels (PIM and PSM). The PSM level in ArchWiSeN
allows the portability of the approach potentially for any
current of future WSAN platform. The capability to gen-
erate middleware components available in CoSMIC can be
implemented in ArchWiSeN due the flexibility to introduce
any new platform, even at the middleware level. Actually,
our research group is working in a future project to include
the modeling of middleware platforms in the ArchWiSeN
approach. ArchWiSeN also offers design-phase validation
tools that were presented in [35].

The work described in [21] proposes a development
process for distributed applications where the middleware
is considered the core element. It also extracts three non-
functional requirements of middleware and proposes a
middleware-based distributed systems software process. The
proposed software process consists of five phases: require-
ments analysis, design, validation, development, and testing.
Such an approach leverages the combined use of component-
based software engineering, separation of concerns, model-
driven architecture, formal methods, and aspect-oriented
programming in the context of a new software development
method.Differently fromsuch an approach,ArchWiSeNpro-
poses two different processes: (1) the first process consists
in building the MDA infrastructure itself, allowing future
developers to introduce new platforms to allow code genera-
tion; (2) the second process consists in building a specific
application using the related MDA infrastructure. Arch-
WiSeN clearly specifies how each developer contributes to
the application development.Moreover, asmentionedbefore,
ArchWiSeN is open to be integrated with middleware plat-
forms.

The paper presented in [22] describes a model-integrated
approach (also called model-integrated computing—MIC)
for embedded software development based on domain-
specific, multi-view models that are used in all phases of the
development. As pointed in [22] the use of a meta-modeling
approach is very powerful, but changes in meta-models often
invalidate existing domain models, thus requiring extensive
rebuilding. With the use of UML profiles as the extensibility
mechanism in ArchWiSeN, it is possible to make changes in
the PIM or PSM meta-models without invalidating any pre-
viously defined model thus circumventing such drawback.

5 Conclusions and future work

The use of an MDA approach can benefit the developers
regarding effort, reuse, andmaintainability.Our approach has
shown that such benefits are present in the context of WSAN
applications enabling the rapid development even when con-
sidering multi-domain and multi-platform applications and
providing an appropriate tool chain for application develop-
ment. As stated by Fowler [15] “one of the themes that winds

123

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 975

constantly across both forms of language oriented program-
ming is the involvement of lay programmers: domain experts
who are not professional programmers but program in DSLs
as part of the development effort” which we can easily cor-
relate with the motivation of our approach, where domain
experts are responsible for developing WSAN and do not
often have the platform-specific knowledge. The advantage
of using a DSL approach is to drop all the baggage of your
host platform and present something that is very clear for the
domain expert [15]. Moreover, the lack of communication is
often the biggest roadblock in software development projects
[15]. Therefore, clearing the need of an application engi-
neering approaches improving the communication between
developers and achieving the separation of concerns.

In this paper, we advocated that the OMG’s standard
for the MDD approach (the model-driven architecture) is
indicated for the WSAN due its intrinsic characteristics as
multi-domain applicability and the use of different hardware
platform with different capabilities. We have shown how the
use of a model-driven approach aids in the development of
WSAN applications by increasing the level of abstraction
and enabling the automatic generation of most of the code
needed to implement and execute the application. In addition,
buildingWSAN systems using our approach allows the divi-
sion of responsibilities among developers, allowing them to
use their specific knowledge and avoiding the need of learn-
ing about requirements that do not belong to their expertise
field. With our approach, domain experts are able to create
WSAN applications without having specific knowledge on
WSAN platform and using only UMLmodels to define their
application. It is worth noting that our approach is partic-
ularly useful for WSANs given the high heterogeneity and
constant technological changes typical of such environment.
The results obtained from the performed evaluation indicate
that our approach achieves its goals by offering to the devel-
opers an infrastructure and an application engendering that
augments productivity, comprehension, and reuse in WSAN
application development.

Our work also showed how the lack of a methodology
can affect the development effort, comprehension, and reuse
in WSAN application development. The addition of a well-
structured software engineering process can greatly benefit
the WSAN domain. The use of an MDA approach works
perfectly to the WSAN domain because it creates a high
abstraction level where developers can benefit from different
views from the domain and network information. Our MDA
approach is also open for existing and future WSAN plat-
forms, requiring only the specification of platform-specific
models and transformations to port any already developed
application to a new emergent platform.

As future directions of our research, we intend to imple-
ment new functionalities to allow the model analysis during
design phase and help developers in the application valida-

tion process. Since platform-independent models encompass
the WSAN physical structure and behavior, they can be used
to make calculations with the defined model elements or
properties to enable the analysis of non-functional require-
ments during the WSAN, or more generically DRE, system
design.With this information in a very early stage of develop-
ment, developers would be able to make better choices when
defining their applications.Moreover, our approach currently
does not tackle the issue of synchronization between mod-
els. We plan to implement a traceability mechanism between
models in future versions benefiting from our domain engi-
neering process. The lack of bi-directional transformations
can impact the reuse of the models as the manually added
properties are lost if the M2M transformation is performed.
Such feature was initially considered as future work of
our approach. Finally, the implementation of the support of
a middleware technology in our MDA solution is a very
promising alternative to define a customizable middleware
that could be used for WSANs or DREs. Since middlewares
often require a high amount of resources, such as memory
and processing power, it remains unlikely to install in the
nodes of a WSAN a generic middleware that could provide
all common or domain-specific services. Thus, in general,
developers are required to select only the essential services
manually, which is a complex process that affects the devel-
opment time and the level of reuse. For a future work, we
intent to enable the ArchWiSeN to perform the automatic
generation of customized middleware specially tailored to
the context of the application modeled by developers.

The analysis of the correctness of the PIM model prior to
the transformation process can bring benefits to developers to
indicate whether a developed model is semantically correct
before generating the source code. For example, an activity
defined in the PIM model with the «readSensor» stereotype
requires the definition of at least one data type associated
with the reading of this sensor. Although if such data are
not specified by the developer, the program is likely to be
incompletely generated or with errors. Such analysis can be
implemented by defining UML restrictions through the use
of object constraint language (OCL) that is compatible with
the UML version presented in this work.

Concerning the reuse metric used in the performed exper-
iment, the answers obtained with the participants question-
naires did not help to pinpoint the problem. However, the
time needed to execute the reuse tasks was lower with the
ArchWiSeN approach. Such results indicate that a higher
abstraction level approach canbenefit the developers to addor
remove new functionalities of some applications even when
there is no mechanism to keep sync between models and
source code.We intend to repeat our experiment in the future
to try determining the causes of these results.

Finally, although our goal in this work was defining an
instance of anMDA-based development process, specifically

123

www.manaraa.com

976 T. Rodrigues et al.

tailored for building generic WSAN applications, instead of
defining a reusable process framework for this domain, we
envision that, as the proposed software process evolves by
incorporating the lessons learned over time, it will be impor-
tant to use a standard meta-process (such as Eclipse Process
Framework [13]) for specifying such evolution in a system-
atic way.

Acknowledgements This work was partly supported by the Brazilian
funding agencies CAPES, CNPq, and FAPERJ. Flávia Delicato, Paulo
Pires, Thais Batista and Luci Pirmez are CNPq Fellows.

References

1. Akbal-Delibas, B., et al.: Extensible and precisemodeling for wire-
less sensor networks. In: Yang, J., et al. (eds.) Information Systems:
Modeling, Development, and Integration. Springer, Berlin (2009)

2. Andreas Jedlitschka,M.C.: Guide toAdvancedEmpirical Software
Engineering. Springer, London (2008)

3. Basaran, C., Kang, K.-D.: Quality of service in wireless sensor
networks. In: Misra, S.C., et al. (eds.) Guide to Wireless Sensor
Networks. Springer, London (2009)

4. Basili, V.R., et al.: Encyclopedia of Software Engineering. Wiley,
Hoboken (2002)

5. Berardinelli, L., et al.: Modeling and analyzing performance of
software for wireless sensor networks. In: Proceeding of the
2nd Workshop on Software Engineering for Sensor Network
Applications—SESENA ’11, p. 13. ACM Press, New York, New
York, USA (2011)

6. Cetina, C., et al.: Applying software product lines to build auto-
nomic pervasive systems. In: 2008 12th International Software
Product Line Conference, pp. 117–126 (2008)

7. Cronbach, L.J.: Coefficient alpha and the internal structure of tests.
Psychometrika 16(3), 297–334 (1951)

8. Czarnecki, K.: Unconventional Programming Paradigms. Springer,
Berlin (2005)

9. Davis, F.D.: PerceivedUsefulness, PerceivedEase ofUse, andUser
Acceptance of Information Technology. MIS Q. 13, 3, 319 (1989)

10. Delicato, F., et al.: Variabilities ofwireless and actuators sensor net-
workmiddleware for ambient assisted living. In: Proceedings of the
International Work Artificial Neural Networks Part II Distributed
Computing, Artificial Intelligence Bioinformatics, Soft Comput-
ing, Ambient Assisted Living, vol. 5518, pp. 851–858 (2009)

11. Easy Programming of IntegratedWireless Sensor Networks. http://
www.project-makesense.eu/. Accessed on 20 May 2014

12. Eclipse Project: Acceleo. http://www.eclipse.org/acceleo/
13. Eclipse Process Framework Project (EPF). http://www.eclipse.org/

epf/
14. Eclipse Project: Papyrus. http://www.eclipse.org/papyrus/
15. Fowler, M.: Language Workbenches: The Killer-App for

Domain Specific Languages? http://martinfowler.com/articles/
languageWorkbench.html

16. Fuchs, G., German, R.: UML2 activity diagram based program-
ming of wireless sensor networks. In: Proceedings of the 2010
ICSE Workshop on Software Engineering for Sensor Network
Applications—SESENA ’10, p. 8. ACM Press, New York, NY,
USA (2010)

17. Fuentes, L., Gámez, N.: Configuration process of a software
product line for Ami middleware. J. Univers. Comput. Sci. 16,
1592–1611 (2010)

18. Gay, D., et al.: The nesC language. ACM SIGPLAN Not. 38(5), 1
(2003)

19. Gliem, J., Gliem, R.: Calculating, interpreting, and reporting
cronbach’s alpha reliability coefficient for likert-type scales. In:
Proceedings of the Midwest Research to Practice Conference in
Adult, Continuing, and Community Education, pp. 82–88. Ohio
State University, Columbus, OH (2003)

20. Harris, Peter: Designing and Reporting Experiments in Psychol-
ogy. McGraw-Hill International, New York (2008)

21. Jingyong,L., et al.:Middleware-based distributed systems software
process. In: Proceedings of the 2009 International Conference on
Hybrid Information Technology—ICHIT ’09, pp. 345–348. ACM
Press, New York, NY, USA (2009)

22. Karsai, G., et al.:Model-integrated development of embedded soft-
ware. Proc. IEEE. 91(1), 145–164 (2003)

23. Likert, R.: A technique for the measurement of attitudes. Arch.
Psychol. 22(140), 1–55 (1932)

24. Losilla, F., et al.: Wireless sensor network application develop-
ment: an architecture-centric MDE approach. In: Proceedings of
the First European Conference on Software Architecture, pp. 179–
194. Springer, Berlin, Heidelberg (2007)

25. MEMSIC: MICAz Datasheet. http://www.memsic.com/
wireless-sensor-networks/

26. Miller, J., Mukerji, J., (eds.): MDA Guide Version 1.0. 1. Object.
Management Group, Needham (2003)

27. Model Driven Architecture (MDA). http://www.omg.org/mda/.
Accessed on 20 May 2014

28. Nunnally, J.C.: Psychometric Theory. McGraw-Hill, Michigan
(1978)

29. OBEO, INRIA: ATL—Amodel transformation technology. http://
www.eclipse.org/atl/

30. Object Management Group: Model Driven Architecture Guide rev.
2.0. http://www.omg.org/cgi-bin/doc?ormsc/14-06-01

31. OMG: Unified Modeling Language (UML). http://www.uml.org/
32. Oracle: Sun SPOT. http://www.sunspotworld.com
33. Perry, D.E., et al.: Empirical studies of software engineering.

In: Proceedings of the Conference on the future of Software
engineering—ICSE ’00, pp. 345–355. ACM Press, New York, NY,
USA (2000)

34. Pfleeger, S.L.: Experimental design and analysis in software engi-
neering. Ann. Softw. Eng. 1(1), 219–253 (1995)

35. Rodrigues, T., et al.: Model-driven approach for building efficient
wireless sensor and actuator network applications. In: Proceedings
of the 4th International Workshop on Software Engineering for
Sensor Network Applications (SESENA), pp. 43–48. IEEE (2013)

36. Rodrigues, T., et al.: Model-driven development of wireless sensor
network applications. In: Proceedings of the 9th International Con-
ference Embedded and Ubiquitous Computing, pp. 11–18 (2011)

37. Dos Santos, I.L., et al.: A localized algorithm for structural health
monitoring using wireless sensor networks. Inf. Fusion 15, 114–
129 (2014)

38. Schmidt, D., et al.: CoSMIC: an MDA generative tool for dis-
tributed real-time and embedded component middleware and
applications. In: Proceedings of the OOPSLA 2002 workshop on
generative techniques in the context of model driven architecture.
ACM, Seattle, USA (2002)

39. Shimizu, R., et al.: Model driven development for rapid prototyp-
ing and optimization of wireless sensor network applications. In:
Proceeding of the 2ndWorkshop on Software Engineering for Sen-
sor Network Applications—SESENA ’11, p. 31. ACM Press, New
York, NY, USA (2011)

40. Telos. http://www.tinyos.net/scoop/special/hardware#telos.
Accessed on 20 May 2014

41. Uml-diagrams.org: UML profile diagram is a structure dia-
gram which describes UML extension mechanism by defining
custom stereotypes, tagged values and constraints. http://www.
uml-diagrams.org/profile-diagrams.html#extension

123

http://www.project-makesense.eu/
http://www.project-makesense.eu/
http://www.eclipse.org/acceleo/
http://www.eclipse.org/epf/
http://www.eclipse.org/epf/
http://www.eclipse.org/papyrus/
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://www.memsic.com/wireless-sensor-networks/
http://www.memsic.com/wireless-sensor-networks/
http://www.omg.org/mda/
http://www.eclipse.org/atl/
http://www.eclipse.org/atl/
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.uml.org/
http://www.sunspotworld.com
http://www.tinyos.net/scoop/special/hardware#telos
http://www.uml-diagrams.org/profile-diagrams.html#extension
http://www.uml-diagrams.org/profile-diagrams.html#extension

www.manaraa.com

An approach based on the domain perspective to develop WSAN applications 977

42. Wada, H., et al.: Modeling and executing adaptive sensor network
applications with the Matilda UML virtual machine, pp. 216–225
(2007)

43. Yick, J., et al.: Wireless sensor network survey. Comput. Netw.
52(12), 2292–2330 (2008)

Taniro Rodrigues received his
PhD degree in Computer Sci-
ence from Federal University of
Rio Grande do Norte (UFRN),
Brazil, in 2015. His research
interests involve wireless sensor
networks,model-drivendevelop-
ment, and ubiquitous systems.

Flávia C. Delicato is an asso-
ciate professor of computer sci-
ence at Federal University of
Rio de Janeiro (UFRJ), Brazil.
She is the author of more than
100 papers and participates in
several research projects with
funding from International and
Brazilian government agencies.
Her research interests include
wireless sensor networks, adap-
tive systems, middleware, and
software engineering techniques
applied to ubiquitous systems.
She has a PhD in electrical and

computer engineering from the Federal University of Rio de Janeiro.
She is a level 1 Researcher Fellow of the National Council for Scientific
and Technological Development.

Thais Batista is an Associate
Professor at the Federal Uni-
versity of Rio Grande do Norte
(UFRN), Brazil. She holds a PhD
in Computer Science from the
Catholic University of Rio de
Janeiro (PUC-Rio), Brazil. She
published more than 140 papers
and she was supervisor of 24
MSc students and 5 PhD theses.
Her current research interests
involve internet of things, cloud
computing, smart cities, soft-
ware architecture, middleware,
and model-based development.

Paulo F. Pires receivedhis Ph.D.
degree in 2002 fromFederalUni-
versity of Rio de Janeiro (UFRJ).
He is an Associate Professor at
UFRJ and integrates the Center
for Distributed and High Perfor-
mance Computing at the Uni-
versity of Sydney. His research
interests areUbiquitousComput-
ing, Model-driven Development,
and Software Architecture.

Luci Pirmez received her Ph.D.
degree in 1996 from Federal
University of Rio de Janeiro
(UFRJ),where she is a researcher
and professor of post-graduation
courses in computer science. Her
research interests include wire-
less sensor networks, network
management, and security.

123

www.manaraa.com

Software & Systems Modeling is a copyright of Springer, 2017. All Rights Reserved.

	An approach based on the domain perspective to develop WSAN applications
	Abstract
	1 Introduction
	2 Approach overview
	2.1 Domain engineering
	2.1.1 Platform-independent meta-model
	2.1.2 Platform-specific meta-model
	2.1.3 Transformations

	2.2 Application engineering

	3 Evaluation
	3.1 Controlled experiment
	3.1.1 Experiment goals
	3.1.2 Questions
	3.1.3 Planning, experimental units, and materials
	3.1.4 Tasks
	3.1.5 Hypotheses, variables, and constructs
	3.1.6 Metrics
	3.1.7 Obtained data
	3.1.8 Hypothesis testing
	3.1.9 Threats to validity

	3.2 Proof-of-concept
	3.2.1 Structural health monitoring application description
	3.2.2 Qualitative analysis

	4 Related work
	5 Conclusions and future work
	Acknowledgements
	References

